The role of aromatic microbial metabolites

  • Natalia V. Beloborodova Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Russian Federation, Moscow, Petrovka str., 25, bld. 2
  • V. V. Moroz Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Russian Federation, Moscow, Petrovka str., 25, bld. 2
  • A. Yu. Bedova Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Russian Federation, Moscow, Petrovka str., 25, bld. 2
Keywords: critical condition, metabolomics, phenylcarboxylic acid, organ failure, sepsis

Abstract

Significant increase in the concentrations of some aromatic metabolites (phenylcarboxylic acids - PhCAs) in blood of patients with sepsis was shown previously. Essential contribution of enhanced bacterial biodegradation of aromatic compounds to this process was proved. Metabolism integration of macroorganism and its microbiota, providing normal symbiosis and sanogenesis, is disturbed in disease, trauma, critical condition. The direction of the interaction could change in favor of prokaryotes by the principle "metabolites of bacteria against host health". Special interest to the aromatic microbial metabolites in the wide range of scientists was revealed by the literature analysis. But there is no clear understanding of their role in the human body. Publications on PhCAs are generally not interconnected by the theme. They are usually directed to solve applied tasks in different fields of biology and medicine. The aim of this work is to unite the existing information on the origin and biological effects of PhCAs in experiments in vitro / in vivo and some clinical findings about them. Summarizing the data of researches at cellular, sub-cellular and molecular levels presented in the review, it is logical to assume the participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. The study on the mechanisms of secondary renal failure and septic encephalopathy for the revelation of the aromatic microbial metabolites role is the most promising. The influence of microbial biodegradation products of aromatic substances on the development of disseminated intravascular coagulation, hypotension and septic shock is an important area for the future researches. The results of further investigations will be not only fundamental, but also will enrich medical practice with new diagnostic and treatment technologies.

Downloads

Download data is not yet available.

References

1. Beloborodova N.V., Osipov G.A. Small molecules originating from microbes (SMOM) and their role in microbes–host relationship. Microbial Ecology in Health and Disease. 2000; 12(1): 12-21
2. Beloborodova N.V., Moroz V.V., Osipov A.A., Bedova A.Yu., Olenin A.Yu., Getsina M.L. et al. Normal level of sepsis-associated phenylcarboxylic acids in human serum. Biochemistry (Moscow). 2015; 80(3) 374-8.
3. Beloborodova N.V. Integration of metabolism in man and his microbiome in critical conditions. Obshchaya Reanimatologiya. 2012; 8(4): 42–54. (in Russian)
4. Beloborodova N.V. Sepsis - a new look at the problem. Terapevticheskiy arkhiv. 2013; 11: 82-90. (in Russian)
5. Beloborodova N., Moroz V., Osipov A., Bedova A., Sarshor Y., Pautova A. et al. Disbalance of microbial metabolites of aromatic acids affects the severity in critically ill patients. Critical Care. 2016; 20(Suppl 2):P026
6. Herrmann K.M. The Shikimate Pathway: Early Steps in the Biosynthesis of Aromatic Compounds. Plant Cell. 1995; 7(7): 907–19.
7. Srinivasan P.R., Katagiri M., Sprinson D.B. The conversion of phosphoenolpyruvic acid and D-erythrose-4-phosphate to 5-de-hydroquinic acid. J. Biol. Chem. 1959; 234(4): 713-5.
8. Russell W.R., Duncan S.H., Scobbie L., Duncan G., Cantlay L., Calder A.G. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 2013; 57(3): 523-35.
9. Valerio F., Lavermicocca P., Pascale M., Visconti A. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation. FEMS Microbiology Letters. 2004; 233(2): 289-95.
10. Gao K., Xu A., Krul C., Venema K., Liu Y., Niu Y. et al. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4-dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006; 136(1): 52-7.
11. González-Barrio R., Edwards C.A., Crozier A. Colonic Catabolism of Ellagitannins, Ellagic Acid, and Raspberry Anthocyanins: In Vivo and In Vitro Studies. Drug Metab. Dispos. 2011; 39(9): 1680-8.
12. Lee H.C., Jenner A.M., Low C.S., Lee Y.K. Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Research in Microbiology. 2006; 157(9): 876-84.
13. Jenner A.M., Rafter J., Halliwell B. Human fecal water content of phenolics: The extent of colonic exposure to phenolic compounds. Free Radic. Biol. Med. 2005; 38(6): 763-72.
14. Beloborodova N.V., Khodakova A.S., Bairamov I.T., Olenin A.Y. Microbial origin of phenylcarboxylic acids in the human body. Biochemistry (Moscow). 2009. 74(12): 1350-5.
15. Clemens P.C., Schunemann M.H., Hoffman G.F., Kohlschutter A. Plasma concentrations of phenyllactic acid in phenylketonuria. J. Inherit. Metab. Dis. 1990; 13(2): 227-8.
16. Chalmersa R.A., Wattsa R.W.E. Quantitative studies on the urinary excretion of unconjugated aromatic acids in phenylketonuria. Clin. Chim. Acta. 1974; 55(3): 281-94.
17. Crawhall J.C., Mamer O., Tjoa S., Claveau J.C. Urinary phenolic acids in tyrosinemia. identification and quantitation by gas chromatography-mass spectrometry. Clin. Chim. Acta. 1971; 34(1): 47-54.
18. Nakamura K., Tanaka Y., Mitsubuchi H., Endo F. Animal models of tirosinemia. J. Nutr. 2007; 137(6 Suppl 1): 1556S-1560S.
19. Rogers A.J., McGeachie M., Baron R.M., Gazourian L., Haspel J.A., Nakahira K. et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS One. 2014; 9(1): e87538.
20. Scholze A., Jankowski V., Henning L., Haass W., Wittstock A., Suvd-Erdene S. et al. Phenylacetic acid and arterial vascular properties in patients with chronic kidney disease stage 5 on hemodialysis therapy. Nephron Clin. Pract. 2007; 107(1): 1-6.
21. Sitkin S., Tkachenko E., Vakhitov T., Oreshko L., Zhigalova T. Serum metabolome features in ulcerative colitis and celiac disease based on gas chromatography-mass spectrometry. Gastroenterologiya Sankt-Peterburga. 2013; 3–4: 2-10.
22. Cohen G., Raupachova J., Hörl W.H. The uraemic toxin phenylacetic acid contributes to inflammation by priming polymorphonuclear leucocytes. Nephrol. Dial. Transplant. 2013; 28(2): 421-9.
23. Fong M.Y., McDunn J., Kakar S.S. Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One. 2011; 6(5): e19963.
24. Beloborodova N.V., Olenin A.Yu., Khodakova A.S., Chernevskaya E.A., Khabib O.N. Low-molecular phenol metabolites in blood serum: origin and clinical significance. Anesteziologiya i Reanimatologiya. 2012; 5: 37-41.
25. Kobayashi K., Imazu Y., Shohmori T. p-Hydroxyphenylacetic Acid Concentration in the CSF of Patients with Neurological and Psychiatric Disorders. In: Neurobiology of the Trace Amines (eds Boulton A. A. et al.) 543–8. (Humana Press, 1984).
26. Sandler M., Ruthven C.R., Goodwin B.L., Coppen A. Decreased cerebrospinal fluid concentration of free phenylacetic acid in depressive illness. Clin. Chim. Acta. 1979; 93(1): 169-71.
27. Gill C.I., McDougall G.J., Glidewell S., Stewart D., Shen Q., Tuohy K. et al. Profiling of Phenols in Human Fecal Water after Raspberry Supplementation. J. Agric. Food Chem. 2010; 58(19): 10389-95.
28. Khodakova A., Beloborodova N. Khodakova, A. Microbial metabolites in the blood of patients with sepsis. Crit. Care. 2007; 11(Suppl 4): P5.
29. Beloborodova N., Moroz V., Bedova A., Sarshor Y., Osipov A., Chernevskaya K. High levels of phenylcarboxylic acids reflect the severity in ICU patients and affect phagocytic activity of neutrophils. Critical Care 2016, 20(Suppl 1): P3. DOI 10.1186/s13054-016-1204-x
30. Gusovsky F., Sabelli H., Fawcett J., Edwards J., Javaid J.I. Gas-liquid chromatographic determination of total phenylacetic acid in urine. Anal. Biochem. 1984; 136(1): 202-7.
31. Henning S.M., Wang P., Abgaryan N., Vicinanza R., Oliveira D.M., Zhang Y. et al. Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Mol. Nutr. Food Res. 2013; 57(3): 483–93.
32. Nardini M., Natella F., Scaccini C., Ghiselli A. Phenolic acids from beer are absorbed and extensively metabolized in humans. J Nutr Biochem. 2006; 17(1): 14-22.
33. Aronov P.A., Luo F.J., Plummer N.S., Quan Z., Holmes S., Hostetter T.H. et al. Colonic contribution to uremic solutes. J. Am. Soc. Nephrol. 2011; 22(9): 1769-76.
34. Haan E., Brown G., Bankier A., Mitchell D., Hunt S., Blakey J. et al. Severe illness caused by the products of bacterial metabolism in a child with a short gut. Eur. J. Pediatr. 1985; 144(1): 63-5.
35. Muting D., Wuzel H., Bucsis L., Flasshoff H.J. Urinary p-hydroxyphenyllactic acid as indicator of hepatic encephalopathy in patients with hepatic cirrhosis. Lancet. 1985; 2(8468): 1365-6.
36. Leibich H.M., Pickert A. Gas chromatographic profiling of phenolic acids in urine of patients with cirrhosis of the liver. Journal of Chromatography. 1985; 338(1): 25-32.
37. Jones M.R., Kopple J.D., Swendseid M.E. Phenylalanine metabolism in uremic and normal man. Kidney Int. 1978; 14(2): 169-79.
38. Niwa T., Ohki T., Maeda K., Saito A., Ohta K., Kobayashi K. A gas chromatographic-mass spectrometric assay for nine hydroxyphenolic acids in uremic serum. Clin. Chim. Acta. 1979; 96(3): 247-54.
39. Khoroshilov S.E., Beloborodova N.V., Nikulin A.V., Bedova A.Yu. Impact of extracorporeal detoxification on the serum levels of microbial aromatic acid metabolites in sepsis. Obshchaya Reanimatologiya. 2015; 11(5): 6–14.
40. Bunchman T.E., Barletta G.M., Winters J.W., Gardner J.J., Crumb T.L., McBryde K.D. Phenylacetate and benzoate clearance in a hyperammonemic infant on sequential hemodialysis and hemofiltration. Pediatr. Nephrol. 2007; 22(7): 1062-5.
41. Shih V.E. Alternative-pathway therapy for hyperammonemia. N. Engl. J. Med. 2007; 356(22): 2321-2.
42. Thibault A., Cooper M.R., Figg W.D., Venzon D.J., Sartor A.O., Tompkins A.C. A. A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Cancer Res. 1994; 54(7): 1690-4.
43. Chang S.M., Kuhn J.G., Robins H.I., Schold S.C., Spence A.M., Berger M.S. et al. Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J. Clin. Oncol. 1999; 17(3): 984-90.
44. Chang S.M., Kuhn J.G., Ian Robins H., Clifford Schold S., Spence A.M., Berger M.S. et al. A study of a different dose-intense infusion schedule of phenylacetate in patients with recurrent primary brain tumors consortium report. Invest. New Drugs. 2003; 21(4): 429-33.
45. Beppu Y., Tsuruoka N., Komura H., Nagai K. Medicinal composition, food or drink having effect on enhancing parasympathetic nervous activity. Patent US 8492442 B2, US; 2008.
46. Zhu L., Shao Y.D., Dai H.J., Dong J.C., Xue F. Effects of sodium beta-3,4-dihydroxyphenyl lactate and beta-phenyl lactic acid on prostacycline and thromboxane A2 contents in the plasma of rabbits after coronary artery occlusion. Zhongguo Yao Li Xue Bao. 1986; 7(6): 533-6.
47. Zhu L., Shao Y.D., Wang J.Y., Lin D.L., Gu C.L., Li Y.H. et al. Effect of beta-phenyl lactic acid on platelet aggregation, thrombosis, and plasma cAMP content. Zhongguo Yao Li Xue Bao. 1988; 9(3): 249-51.
48. Collier V.U., Butler D.O., Mitch W.E. Metabolic effects of L-phenyllactate in perfused kidney, liver, and muscle. Am. J. Physiol. 1980; 238(5): E450-7.
49. Rauschenbach M.O., Zharova E.I., Sergeeva T.I., Ivanova V.D., Probatova N.A. Blastomogenic Activity of p-Hydroxyphenyllactic Acid in Mice. Cancer Res. 1975; 35(3): 577-85.
50. Duke P.S., Yuen T.G., Demopoulos H.B. In Vitro Growth Inhibition of S-91 Mouse Melanomas by Tyrosinase. Cancer Res. 1967; 27(10): 1783-7.
51. Kim M., An S.M., Koh J.S., Jang D.I., Boo Y.C. Use of non-melanocytic HEK293 cells stably expressing human tyrosinase for the screening of anti-melanogenic agents. J Cosmet Sci. 2011; 62(5): 515-23.
52. Fedotcheva N.I., Kazakov R.E., Kondrashova M.N., Beloborodova N.V. Toxic effects of microbial phenolic acids on the functions of mitochondria. Toxicology Letters. 2008; 180(3): 182-8.
53. Beloborodova N., Bairamov I., Olenin A., ShubinaV, Teplova V., Fedotcheva N. Effect of phenolic acids of microbial origin on production of reactive oxygen species in mitochondria and neutrophils. Journal of Biomedical Science. 2012; 19: 89.
54. Jankowski J., Luftmann H., Tepel M., Leibfritz D., Zidek W., Schlüter H. Characterization of dimethylguanosine, phenylethylamine, and phenylacetic acid as inhibitors of Ca2+ ATPase in end-stage renal failure. J. Am. Soc. Nephrol. 1998; 9(7): 1249-57.
55. Dwivedy A.K., Shah S.N. Effects of phenylalanine and its deaminated metabolites on Na+,K+-ATPase activity in synaptosomes from rat brain. Neurochem. Res. 1982; 7(6): 717-25.
56. Jankowski J., van der Giet M., Jankowski V., Schmidt S., Hemeier M. Mahn B. et al. Increased plasma phenylacetic acid in patients with end-stage renal failure inhibits iNOS expression. J. Clin. Invest. 2003; 112(2): 256-64.
57. Yano S., Yamaguchi T., Kanazawa I., Ogawa N., Hayashi K., Yamauchi M. et al. The uraemic toxin phenylacetic acid inhibits osteoblastic proliferation and differentiation: an implication for the pathogenesis of low turnover bone in chronic renal failure. Nephrol. Dial. Transplant. 2007; 22(11): 3160-5.
58. Beloborodova N., Teplova V., Fedotcheva N. The role of microbial metabolites in mitochondrial dysfunction in sepsis. [Rol, mikrobnykh metabolitov v disfunktsii mitokhondriy pri sepsise]. Lambert Academic Publishing, 2013. (in Russian)
59. Fedotcheva N.I., Litvinova E.G., Ocipov A.A., Olenin A.Ju., Mopoz V.V., Belobopodova N.V. Influence of microbial metabolites of phenolic nature on the activity of mitochondrial enzymes. Biofizika. 2015; 60(6): 1118-24. (in Russian)
60. Dieuleveux V., Lemarinier S., Guéguen M. Antimicrobial spectrum and target site of D-3-phenyllactic acid. Int. J. Food Microbiol. 1998; 40(3): 177-83.
61. Lavermicocca P., Valerio F., Evidente A., Lazzaroni S., Corsetti A., Gobbetti M. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl. Environ. Microbiol. 2000; 66(9): 4084-90.
62. Manu D.K. Antimicrobial effectiveness of Phenyllactic acid against foodborne pathogenic bacteria and Penicillium and Aspergillus molds: diss. Animal Science: Iowa; 2012.
63. Cueva C., Moreno-Arribas M.V., Martín-Alvarez P.J., Bills G., Vicente M.F., Basilio A. et al. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res Microbiol. 2010; 161(5): 372-82.
64. Beloborodova N.V., Moroz V.V., Osipov A.A., Vlasenko A.V., Fateev K.M., Sarshor Y.N. et al. Prognostic value phenylcarboxylic acids in patients with acute abdomen. Shock. 2015; 44 (Suppl. 2) 13.
Published
2018-01-27
How to Cite
Beloborodova N. V., Moroz V. V., Bedova A. Y. The role of aromatic microbial metabolites // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2018. VOL. 62. № 1. PP. 97–108.
Section
Reviews