Association of heteroplasmic mutations of mitochondrial genome with coronary heart disease

  • N. A. Orekhova Lomonosov Moscow State University, 1, Leninskiye Gory, 119991, Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovation Centre, Skolkovo, 100 Novaya Str., 143025 Moscow Region, Russia
  • I. A. Sobenin Russian Cardiology Research and Production Complex, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia; Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
  • K. Y. Mitrofanov Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
  • M. A. Sazonova Russian Cardiology Research and Production Complex, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia; Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia http://orcid.org/0000-0002-8610-4593
  • A. Y. Postnov Russian Cardiology Research and Production Complex, 15-a 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
  • V. P. Karagodin Institute for Atherosclerosis Research, Skolkovo Innovation Centre, Skolkovo, 100 Novaya Str., 143025 Moscow Region, Russia http://orcid.org/0000-0003-0501-8499
  • A. N. Orekhov Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia; Institute for Atherosclerosis Research, Skolkovo Innovation Centre, Skolkovo, 100 Novaya Str., 143025 Moscow Region, Russia http://orcid.org/0000-0002-6495-1628
Keywords: atherosclerosis, coronary heart disease, mitochondrial mutations, heteroplasmy, infarction

Abstract

Purpose of the study. Improvement of the risk assessment algorithm, and genetic diagnosis of predisposition to the development of atherosclerosis and cardiovascular diseases. Methods. To assess the diagnostic significance of the degree of mitochondrial heteroplasmy, the determination of this index was performed in 100 healthy individuals and 325 patients with CHD, including 225 CHD patients - myocardial infarction survivors. The real-time polymerase chain reaction (RT-PCR) method was used to analyze 9 mutations of the mitochondrial genome, which correlated with the extent of carotid atherosclerosis. Results. Mathematical model for determining the genetic risk of coronary heart disease was developed based on the calculation of total mutational load of the mitochondrial genome by mtDNA variants m.12315G>A in MT-TL2 gene, m.15059G>A in MT-CYB gene, m.3256C>T in MT-TL1 gene, and m.13513G>A in MT-ND5 gene. This model explained not less than 60% of the variability of clinical manifestations of atherosclerosis, and was not dependent on other cardiovascular risk factors. Conclusion. Based on the analysis of the total mutational load of the mitochondrial genome, the method for assessing the genetic risk of the development of CHD and myocardial infarction was developed.

Downloads

Download data is not yet available.

References

1. McCullagh K.G., Duance V.C., Bishop K.A. The distribution of collagen types I, III and V(AB) in normal and atherosclerotic human aorta. J. Pathol. 1980; 130: 45-55.
2. Zhelankin A.V., Sazonova M.A. Association of the mutations in the human mitochondrial genome with chronic non-inflammatory diseases: type 2 diabetes, hypertension and different types of cardiomyopathy. Patologicheskaya fiziologiya i ehksperimental'naya terapiya. 2012; 3:123-8. (in Russian)
3. Sobenin I.A., Chistiakov D.A., Bobryshev Y.V., Postnov A.Y., Orekhov A.N. Mitochondrial mutations in atherosclerosis: new solutions in research and possible clinical applications. Curr Pharm Des. 2013; 19: 5942-53.
4. Yu E., Mercer J., Bennett M. Mitochondria in vascular disease. Cardiovasc Res. 2012; 95: 173-82.
5. Turner R.C., Cull C.A., Frighi V., Holman R.R. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS). 1999; 281: 2005-2012.
6. Chinnery P.F., Thorburn D.R., Samuels D.C. et al. The inheritance of mtDNA heteroplasmy: random drift, selection or both? Trends Genet. 2000; 16: 500–5.
7. Kaufmann P., Koga Y., Shanske S., et al. Mitochondrial DNA and RNA processing in MELAS. Ann. Neurol. 1996; 40: 172-80.
8. Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends. Genet. 1997; 13: 450-5.
9. Robinson B.H. Human Complex I deficiency: clinical spectrum and involvement of oxygen free radicals in the pathogenecity of the defect Bichem. Biophys. Acta. 1998; 1364: 271-26.
10. Sukernik R.I., Derbeneva O.A. Starikovskaya E.B. Mitochondrial genome and mitochondrial disease in humans. Genetics. 2002; 38: 1-10.
11. Mitrofanov K.Iu., Sazonova M.A. Association of point mutations in human nuclear and mitochondrial genome with coronary artery disease. Patologicheskaya fiziologiya i ehksperimental'naya terapiya. 2012; 2:51-5. (in Russian)
12. Ivanova M.M., Borodachev E.N., Sazonova M.A. Human pathologies associated with mutations of mitochondrial genome. Patologicheskaya fiziologiya i ehksperimental'naya terapiya. 2012; 3:115-22. (in Russian)
13. Sobenin I.A., Zhelankin A.V., Mitrofanov K.Y., Sinyov V.V., Sazonova M.A., Postnov A.Y., Orekhov A.N. Mutations of Mitochondrial DNA in Atherosclerosis and Atherosclerosis-Related Diseases. Curr. Pharm. Des. 2015; 21(9):1158-63.
14. Singh V.N. Coronary Heart Disease. Medicine Health, 2002.
15. Hodis H., Mack W., LaBree L. et al. Reduction in carotid arteriial wall thikness using lovastatin and dietary therapy: A randomized, controlled clinical trial. Ann. Intern. Med. 1996; 124: 548-56.
16. Benjamin E.J., Wolf P.A., D'Agostino R.B., Silbershatz H., Kannel W.B., Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation. 1998; 98: 946-52.
17. Lang T.A., Secic M. How to report statistics in medicine: annotated guidelines for authors, editors, and reviewers. Second edition. American College of Physicians, Philadelphia, 2006.
18. http://frodo.wi.mit.edu//accessed date 25.02.2017
19. Mehrazin M., Shanske S., Kaufmann P., et al. Longitudinal changes of mtDNA A3243G mutation load and level of functioning in MELAS. Am. J. Med. Genet. A. 2009; 149: 584-7.
20. http://www.basic.northwestern.edu/biotools/OligoCalc.html / accessed date 27.01.2017
21. http://mfold.rna.albany.edu/?q=dinamelt / accessed date 15.03.2017
22. http://www.ncbi.nlm.nih.gov/tools/primer-blast// accessed date 17.01.2017
23. Sazonova M.A., Ryzhkova A.I., Sinyov V.V., Galitsyna E.V., Orekhova V.A., Melnichenko A.A., Orekhov A.N., Ravani A.L., Sobenin I.A.. New markers of atherosclerosis: a threshold level of heteroplasmy in mtDNA mutations. Vessel Plus. 2017; 1: 182-91.
24. http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&BLAST_PROGRAMS=megaBlast&PAGE_TYPE=BlastSearch/ accessed date 09.02.2017
25. Assmann G., Cullen P., Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Muenster (PROCAM) study. Circulation. 2002; 105: 310-5.
Published
2018-01-23
How to Cite
Orekhova N. A., Sobenin I. A., Mitrofanov K. Y., Sazonova M. A., Postnov A. Y., Karagodin V. P., Orekhov A. N. Association of heteroplasmic mutations of mitochondrial genome with coronary heart disease // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2018. VOL. 62. № 1. PP. 4–10.
Section
Original research