Characteritics of bone marrow cell graft from patients with chronic heart failure before and after a short-term exposure to erythropoietin

  • Alexander P. Lykov Research Institute of Clinical and Experimental Lymрhology, Novosibirsk, Russia; E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia http://orcid.org/0000-0003-4897-8676
  • Aleksandr M. Cherniavsky E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia http://orcid.org/0000-0001-9818-8678
  • Olga V. Poveshchenko Research Institute of Clinical and Experimental Lymрhology, Novosibirsk, Russia; E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia http://orcid.org/0000-0001-9956-0056
  • Alexey V. Fomichev E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
  • Maria A. Surovtseva http://orcid.org/0000-0002-4752-988X
  • Natalia A. Bondarenko Research Institute of Clinical and Experimental Lymрhology, Novosibirsk, Russia; E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia http://orcid.org/0000-0002-8443-656X
  • Irina I. Kim Research Institute of Clinical and Experimental Lymрhology, Novosibirsk, Russia; E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia http://orcid.org/0000-0002-7380-2763
  • Yulia E. Kareva E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
  • Alexandra R. Tarkova Research Institute of Clinical and Experimental Lymрhology, Novosibirsk, Russia; E.N. Meshalkin Siberian Federal Biomedical Research Center, Novosibirsk, Russia
Keywords: heart failure; bone marrow stem/progenitor cells; cytoprotective effect of erythropoietin.

Abstract

Autologous bone marrow stem cells are an alternative therapy for patients with heart failure. The aim of this work was to study the phenotype and functional properties of bone marrow mononuclear cells (BM-MNCs) from patients with chronic heart failure (CHF) before and after a short-term in vitro exposure to erythropoietin. Methods. BM-MNCs were isolated using density gradient. The BM-MNC phenotype, cell cycle, and apoptosis of CD34+ cells were evaluated before and after exposure to erythropoietin with a flow cytometer. Proliferation of BM-MNCs before and after the erythropoietin exposure was evaluated in a spontaneous and stimulating test. Proliferation, migration, and angiogenic potential of EA.hy 929 cells were studied in the wound closure test and in the tubule formation test under the influence of 30% conditioned medium from BM-MNCs. Results. BM-MNCs represented a mixture of hematopoietic stem cells (HSCs), endothelial progenitor cells (EPCs) at different stages of maturation and differentiation, and mesenchymal stem cells (MSCs). Erythropoietin increased the number of CD34+ cells in the G0/G1 cell cycle phase, CD45+/EpoR+, CD31-/CD184+, CD31+/CD184+, and CD34+/CD184-, and decreased the number of CD34+/CD133+ and CD34+/EpoR. The erythropoietin exposure of BM-MNCs reduced their proliferative capacity. The BM-MNCs-conditioned medium promoted EA.hy 929 cell proliferation, migration, and formation of vascular-like structures. Conclusion. A short-term exposure of BM-MNCs delayed the resting stage of CD34+ cells, increased the pool of EPCs expressing the homing receptor while the BM-MNC conditioned medium stimulated EA.hy 929 proliferation, migration and tubule formation, which should be taken into account when selecting methods to enhance survival of cellular grafts.

Downloads

Download data is not yet available.

References

1. Moiseeva OM, Karelkina EV, Moroshkin VS, Selyutin AV, Shlyakhto EV. The Study of Circulating Endothelial Precursor Cells in Patients With Chronic Heart Failure. Kardiologiya. (Cardiology Russian Journal). 2011; 12: 36-42. (in Russian)

2. Kochegura TN, Efimenko AY, Akopyan ZhA, Parfenova EV. Stem cell therapy of heart failure: clinical trial, problems and perspectives. Geny I kletki. (Gen and cells Russian Journal). 2010; 2: 11-8. (in Russian)

3. Seurder D, Radrizzani M, Turchetto L, Lo Cicero V, Soncin S, Muzzarelli S, Auricchio A, Moccetti T. Combined Delivery of Bone Marrow-Derived Mononuclear Cells in Chronic Ischemic Heart Disease: Rationale and Study Design. Clin Cardiol. 2013; 36(8): 435-41.

4. Tse H-F, Siu C-W, Zhu S-G, Songyan L, Zhang Q-Y, Lai W-H, Kwong Y-L, Nicholls J, Lau C-P. Paracrine effects of direct intramyocardial implantation of bone marrow derived cells to enhance neovascularization in chronic ischaemic myocardium. Eur J Heart Failure. 2007; 9: 747-53.

5. Pokushalov E, Romanov A, Chernyavsky A, Larionov P, Terekhov I, Artyomenko S, Poveshenko O, Kliver E, Shirokova N, Karaskov A, Dib N. Efficiency of intramyocardial injections of autologous bone marrow mononuclear cells in patients with ischemic heart failure: a randomized study. J Cardiovasc Transl Res. 2010; 3(2): 160-68.

6. Lykov AP, Bondarenko NA, Sakhno LV, Shevela EY, Poveschenko OV, Kim II, Nikonorova YV, Konenkov VI. The impact of secretory factors endothelial cells on the functional activity of human multipotent mesenchymal stromal cells. Fundamental’nye issledovaniya. (Fundamental research Russian Journal). 2014; 4(2): 296-301. (in Russian)

7. Bennis Y, Sarlon-Bartoli G, Guillet B, Lucas L, Pellegrini L, Velly L, Blot-Chabaud M, Dignat-Georges F, Sabatier F, Pisano P. Priming of late endothelial progenitor cells with erythropoietin before transplantation requires the CD131 receptor subunit and enhances their angiogenic potential. J Thromb Haemost. 2012; 10(9): 1914-28.

8. Kandala J, Upadhyay GA, Pokushalov E, Wu S, Drachman DE, Singh JP. Meta-analysis of stem cell therapy in chronic ischemic cardiomyopathy. Am J Cardiol. 2013; 112(2): 217-25.

9. Osikov MV, Akhmatov VY, Telesheva LF, Fedosov AA, Ageev YI, Surovyatkina LG. Pleiotropic effects of erythropoietin in chronic renal failure. Fundamental’nye issledovaniya. (Fundamental research Russian Journal).2013; 7(1): 218-24. (in Russian)

10. Nepomnyashchikh LM, Lushnikova EL, Larionov PM, Shurygin MG. Myocardial regeneration: proliferative potential of cardiomyocytes and induction of cardiomyogenesis at alterative and plastic cardiac failure. Annals of the Russian academy of medical sciences. 2010; 5: 3-11. (in Russian)

11. Hristov M, Zernecke A, Bidzhekov K, Liehn EA, Shagdarsuren E, Ludwig A, Weber C. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res. 2007; 100(4): 590-7.

12. Colombo E, Marconi C, Taddeo A, Cappelletti M, Villa ML, Marzorati M, Porcelli S, Vezzoli A., Bella SD. Fast reduction of peripheral blood endothelial progenitor cells in healthy human exposed to acute systemic hypoxia. J Physiol. 2012; 590(3): 519-32.

13. Zakharov YuM. Citoprotective effects of erythropoietin. Klinicheskaya nefrologiya. (Clinical Nephrology Russian Journal). 2009; 1: 16-21. (in Russian)

14. Kiani AA, Kazemi A, Halabian R, Mohammadipour M, Jahanian-Najafabadi A, Roudkenar MH. HIF-1a confers resistance to induced stress in bone marrow-derived mesenchymal stem cells. Arch Med Res. 2013; 44(3): 185-93.

15. Parkn J-H, Yoon JY, Ko SM, Jin SA, Kim JH, Cho C-H, Kim J-M, Lee J-H, Choi SW, Seong I-W, Jeong J-O. Endothelial progenitor cell transplantation decreases lymphangiogenesis and adverse myocardial remodeling in a mouse model of acute myocardial infarction. Exp Mol Med. 2011; 43(8): 479-85.

16. Wang QR, Wang BH, Zhu WB, Huang YH, Li Y, Yan Q. An in vitro study of differentiation of hematopoietic cells to endothelial cells. Bone Marrow Res. 2011; 2011: 846096. DOI:10.1155/2011/846096.

17. Ahmed SH, Sabry D, Noh O, Samir M. Potential proliferative effect of lipopolysaccharide preconditioning on human umbilical blood-derived endothelial cells. Afr J Biotechnol. 2015; 14(13): 1167-73.

18. Hur J, Yoon C-H, Kim H-S, Choi J-H, Kang H-J, Hwang K-K, Oh B-H, Lee M-M, Park Y-B. Characterization of Two Types of Endothelial Progenitor Cells and Their Different Contributions to Neovasculogenesis. Arterioscler Thromb Vasc Biol. 2004; 24: 288-93.

19. Roubelakis MG, Tsaknakis G, Pappa KI, Anagnou NP, Watt SM. Spindel shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS One. 2013; 8(1). E.54747. DOI: 10.1371/journal.pone.0054747.

20. Hu R, Cheng Y, Jing H, Wu H. Erythropoietin promotes the protective properties of transplanted endothelial progenitor cells against acute lung injury via PI3K/Akt pathway. Shock. 2014; 42(4): 327-36.

21. Kang J, Yun JY, Hur J, Kang JA, Choi JI, Ko SB, Lee J, Kim JY, Hwang IC, Park YB, Kim HS. Erythropoietin priming improves the vasculogenic potential of G-CSF mobilized human peripheral blood mononuclear cells. Cardiovasc Res. 2014; 104(1): 171-82.

22. Temnov A.A., Volkova A.G., Melerzanov A.V., Novoselov V.I. Effect of conditioned medium from mesenchymal stem cells an regeneration of endothelium of HCl-induced damage trachea in rats. Patologicheskaya Fiziologiya I Eksperimental’naya terapiya. 2017; 61(2): 28-36. (in Russian)
Published
2017-12-18
How to Cite
Lykov A. P., Cherniavsky A. M., Poveshchenko O. V., Fomichev A. V., Surovtseva M. A., Bondarenko N. A., Kim I. I., Kareva Y. E., Tarkova A. R. Characteritics of bone marrow cell graft from patients with chronic heart failure before and after a short-term exposure to erythropoietin // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2017. VOL. 61. № 4. PP. 51–61.
Section
Original research