Testosterone-dependent changes in neurons of hypothalamic arcuate nucleus and reversibility of these changes by modeled male hypogonadism
Abstract
Background. Importance of testosterone deficiency for structural homeostasis of the neurons regulating production of gonadotropin-releasing hormone (GnRH) and synthesizing this hormone is insufficiently understood. Aim. To determine reactive changes, quantity of androgens receptors (AR), and features of their distribution in neurons of hypothalamic medial arcuate nucleus (MAN) in experimental hypogonadism and reversibility of these changes by restorative therapy with testosterone. Methods. Hypogonadism was modeled in 16 Wistar rats by removing one gonad on postnatal days 2-3, and histological sections of caudal MAN were examined in young, 4-month old animals with and without a replacement therapy. The control group consisted of 8 age-matched intact males. Cell reactive changes, areas of slightly changed neuron bodies (Nissl staining of sections), and the number and proportion of nerve cell bodies differing in the degree of AR expression were determined in the middle left-sided part of MAN, on an area of 0.01 mm2. Results. MAN neurons contained a large quantity of AR distributed in different parts of the neuron body. In hypogonadism, AR redistributed and their expression (quantity) decreased. Condensation of AR in the region of nucleo- and plasmolemma and formation of conglomerates in the nucleus and cytoplasm were characteristic of neurons with moderate expression. In the regions of cytoplasm and plasma membrane, the receptors were absent in cells with low and very low expression. The reduced AR expression in hypogonadism was associated with a decreased neuron body area and death of a part of neurons. Conclusions. The identified degenerative changes in the testosterone-dependent neuronal MAN that synthesize GnRH or peptides affecting the GnRH production may decrease the release of GnRH, cause a secondary decrease in the androgen synthesis, and mediate morphological and functional manifestations of GnRH secondary deficit. The replacement therapy partially compensated for degenerative changes in neurons and restored the intensity of AR expression, however, it did not influence the process of nerve cell death.
Downloads
References
2. Nikitina I.L., Bairamov A.A. Formirovanie pola i reproduktivnoy sistemy cheloveka: proshloe, nastoyaschee, buduschee. Lechenie i profilaktika. 2014; (2): 76-85. (in Russian)
3. Hoduleva Yu.N., Asaulenko Z.P., Bairamov A.A., Nikitina I.L., Droblenkov A.V. Degenerativnye izmeneniya neyronov medialnogo arkuatnogo gipotalamicheskogo yadra v modeli muzhskogo gipogonadizma. Pediatriya. 2015; 6(3): 62-8. (in Russian)
4. Ojeda S.R., Terasawa E. Neuroendocrine regulation of puberty. Hormones, Brain and Behavior. 2002; 4: 589-659.
5. Ojeda S.R., Dubay C., Lomniczi A. et al. Gene Networks and the Neuroendocrine Regulation of Puberty. Mol. Cell. Endocrinol. 2010; 324(1): 3-11. Doi: 10.1016/j.mce.2009.12.003.
6. Messager S., Chatzidaki E.E., Ma D. et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA. 2005; 102(5): 1761-1766. Doi: .
7. Ronnekleiv O.K., Kelly M.J. Kisspeptin Excitation of GnRH Neurons. Adv. Exp. Med. Biol. 2013; 784: 113-31. Doi: 10.1007/978-1-4614-6199-9_6.
8. Novaira H.J., Ng Y., Wolfe A., Radovick S. Kisspeptin increases GnRH mRNA expression and secretion in GnRH secreting neuronal cell lines. Molec. Cel. Endocrinol. 2009; 311: 126-34. Doi: 10.1016/j.mce.2009.06.011.
9. Ojeda S.R., Prevot V., Heger S. et al. Glia-to-neuron signaling and the neuroendocrine control of female puberty. Ann. Med. 2003; 35(4): 244-55. PMID: 12846266.
10. Wilkins A., Majed H., Layfield R. et al. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. J. Neurosci. 2003; 23(12): 4967-74. PMID: 12832519.
11. Conn P.M., Hsueh A.J.W., Crowley W.F.J. Gonadotropin-releasing hormone: Molecular and cell biology, physiology, and clinical applications. Fed. Proc. 1984; 43: 2351-61. PMID: 6327393.
12. Kallo I., Vida B., Deli L. et al. Co-Localisation of Kisspeptin with Galanin or Neurokinin B in Afferents to Mouse GnRH Neurones. J. Neuroendocrinol. 2011; 24: 464-76. Doi: 10.1111/j.1365-2826.2011.02262.x.
13.Wray S. Gonadotropin-Releasing Hormone: GnRH-1 System. Encyclopedia of Neuroscience. 2009; 4: 967-73.
14. Lehman M.N., Merkley C.M., Coolen L.M., Goodman R.L. Anatomy of the kisspeptin neural network in mammals. Brain Res. 2010; 1364: 90-102. Doi: 10.1016/j.brainres.2010.09.020.
15. Leranth C., Petnehazy O., MacLusky N.J. Gonadal hormones affect spine synaptic density in the CA1 hippocampal subfield of male rats. J. Neurosci. 2003; 23(5): 1588-92. PMID: 12629162.
16. Moghadami S., Jahanshahi M., Sepehri H., Amini H. Gonadectomy reduces the density of androgen receptor-immunoreactive neurons in male rat’s hippocampus: testosterone replacement compensates it. Behav. Brain Funct. 2015; 12(1): 5. Published online 2016, Jan., 28. Doi: 10.1186/s12993-016-0089-9.
17. Smith M.D., Jones L.S., Wilson M.A. Sex differences in hippocampal slice excitability: role of testosterone. Neurosci. 2002; 109(3): 517-30. PMID: 11823063.
18. Wu D., Gore A.C. Changes in Androgen Receptor, Estrogen Receptor alpha, and Sexual Behavior with Aging and Testosterone in Male Rats. Horm. Behav. 2010; 58(2): 306-16. Doi: 10.1016/j.yhbeh.2010.03.001.
19. Mitsushima D., Takase K., Funabashi T., Kimura F. Gonadal steroids maintain 24 h acetylcholine release in the hippocampus: organizational and activational effects in behaving rats. J. Neurosci. 2009; 29(12): 3808-15. Doi: 10.1523/JNEUROSCI.5301-08.2009.
20. Wu D., Lin G., Gore A.C. Age-related Changes in Hypothalamic Androgen Receptor and Estrogen Receptor a in Male Rats. J. Comp. Neurol. 2009; 512(5): 688-701. Doi: 10.1002/cne.21925.
21. Griffith K., Morton M.S., Nicholson R.I. Androgens, androgen receptors, antiandrogens and the treatment of prostate cancer. Eur. Urology. 1997; 32( Suppl. 3): 24-40. PMID: 9267783.
22. Roy A.K., Tyagi R.K., Song C.S. et al. Androgen receptor: structural domains and function; dynamics after ligand-receptor interaction. Ann. N. Y. Acad. Sci. 2001; 949: 44-57. PMID: 11795379.
23. Mora G.R., Tindall D.J. Activation of androgen receptor // Prostate Cancer. Biology, Genetics, and the New Therapeutics (Eds.: L.W.K. Chung et al.). Totowa (N.J.): Humana Press; 2001: 219-39.
24. Farnsworth W.E. Roles of estrogen and SHBG in prostate physiology. The Prostate.1996; 28: 17-23. Doi: 10.1002/(SICI)1097-0045(199601)28:1.
25. Kirshenblat Ya.D. Praktikum po endokrinologii. Moscow; Vysshaya shkola, 1969. (in Russian)
26. Gorski R.A. Hypothalamic imprinting by gonadal steroid hormones. Adv. Exp. Med. Biol. 2002; 511: 57-70. PMID: 12575756.
27. Kerver H.N., Wade J. Relationships among Sex, Season and Testosterone in the Expression of Androgen Receptor mRNA and Protein in the Green Anole Forebrain. Brain Behav. Evol. 2014; 84(4): 303-14. Doi: 10.1159/000368388.
28. Tetel M.J., Ungar T.C., Hassan B., Bittman E.L. Photoperiodic regulation of androgen receptor and steroid receptor coactivator-1 in Siberian hamster brain. Brain Res. 2004; 131(1-2): 79-87. Doi: 10.1016/j.molbrainres.2004.08.009.
29. Paxinos G., Watson C. The rat brain atlas in stereotaxic coordinates. Fourth Edition. — Elsevier Acad. Press, 1998. Copyright, CD-Rom design by Halasz P. — Fig. 32.
30. Droblenkov A.V. Pathological changes of neurons, mesocortical-limbic dopaminergic system in healthy humans and rats. [Morphology. Patologicheskiye izmeneniya neyronov mezokortiko-limbicheskoy dofaminergicheskoy sistemy u zdorovykh lyudey i krys. Morfologiya]. 2010; 149(3): 11-7. (in Russian)
31. Keil K.P., Abler L.L., Laporta J., Altmann H.M., Yang B., Jarrard D.F., Hernandez L.L., Vezina C.M. Androgen receptor DNA methylation regulates the timing and androgen sensitivity of mouse prostate ductal development. Dev. Biol. 2014; 396(2): 237-245. Doi: 10.1016/j.ydbio.2014.10.006.
32. Asuthkar S., Demirkhanyan L., Sun X., Elustondo P.A., Krishnan V. et al. The TRPM8 Protein Is a Testosterone Receptor. J. Biol. Chem. 2015; 290(5): 2670-2688. Doi: 10.1074/jbc.M114.610873.