Mechanisms of cardiovascular resistance to injury in post-traumatic stress disorder

  • Evgeniya Borisovna Manukhina Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., Moscow, 125315, Russian Federation; University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth 76107, USA
  • Marina Vladislavovna Kondashevskaya «Avtsyn Research Institute of Human Morphology» of Federal State Budgetary Scientific Institution «Petrovsky National Research Centre of Surgery», 3 Tsyurupy St., Moscow 117418, Russian Federation
  • Olga Petrovna Budanova Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., Moscow, 125315, Russian Federation https://orcid.org/0000-0002-6650-5082
  • Vadim Eduardovich Tseilikman South Ural State University (National Research University), 76 Prosp. Lenina, Chelyabinsk, 454080, Russian Federation; Novosibirsk National Research State University, 1 Pirogov St., Novosibirsk, 630090, Russian Federation; Chelyabinsk State University, 129 Bratyev Kashirinykh St., Chelyabinsk, 454001, Russian Federation https://orcid.org/0000-0003-2935-7487
  • Harry Fred Downey University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth 76107, USA
Keywords: post-traumatic stress disorder, cardiovascular system, resistance, inflammation, oxidative stress, hypothalamic-pituitary-adrenal system, hemostasis

Abstract

Post-traumatic stress disorder (PTSD) is a severe psychiatric disorder that develops in people who have experienced traumatic events. PTSD often induces cardiovascular diseases and is their predictor and independent risk factor. Although approximately 50 to 84% of people experience severe, traumatic events during their lifetime, most of them do not develop chronic PTSD. The review summarizes experimental and clinical reports on the mechanisms of cardiovascular resistance to PTSD, which can help developing methods to enhance PTSD resilience in high-risk groups.

Downloads

Download data is not yet available.

References

1. Gupta M.A. Review of somatic symptoms in post-traumatic stress disorder. Int. Rev. Psychiatry 2013; 25(1): 86-99. doi: 10.3109/09540261.2012.736367.
2. Hashmi S., Al-Salam S. Acute myocardial infarction and myocardial ischemia-reperfusion injury: a comparison. Int. J. Clin. Exp. Pathol. 2015; 8(8): 8786-9796.
3. Kubzansky L.D., Koenen K.C. Is posttraumatic stress disorder related to development of heart disease? An update. Cleve Clin. J. Med. 2009; 76(Suppl 2): S60-S65. doi: 10.3949/ccjm.76.s2.12.
4. Edmondson D., Kronish I.M., Shaffer J.A., Falzon L., Burg M.M. Posttraumatic stress disorder and risk for coronary heart disease: a meta-analytic review. Am. Heart J. 2013; 166(5): 806-814. doi: 10.1016/j.ahj.2013.07.031.
5. Akosile W., Colquhoun D., Young R., Lawford B., Voisey J. The association between post-traumatic stress disorder and coronary artery disease: a meta-analysis. Australas Psychiatry. 2018; 26(5): 524-530. doi: 10.1177/1039856218789779..
6. Turner J.H., Neylan T.C., Schiller N.B., Li Y., Cohen B.E. Objective evidence of myocardial ischemia in patients with posttraumatic stress disorder. Biol. Psychiatry 2013; 74(11): 861-866. doi: 10.1016/j.biopsych.2013.07.012.
7. Vaccarino V., Goldberg J., Rooks C., Shah A.J., Veledar E., Faber T.L., et al. Post-traumatic stress disorder and incidence of coronary heart disease. A twin study. J. Am. Coll. Cardiology 2013; 62(11): 970-978. 10.1016/j.jacc.2013.04.085.
8. Song H., Fang F., Arnberg F.K., Mataix-Cols D., de la Cruz L.F., Almqvist C., et al. Stress related disorders and risk of cardiovascular disease: population based, sibling controlled cohort study. BMJ. 2019; 365: l1255. doi: 10.1136/bmj.l1850.
9. Polimanti R., Wendt F.R., Pathak G.A., Tylee D.S., Tcheandjieu C., Hilliard A.T., et al. Understanding the comorbidity between posttraumatic stress severity and coronary artery disease using genome-wide information and electronic health records. Mol. Psychiatry. 2022; 27(10): 3961-3969. doi: 10.1038/s41380-022-01735-z.
10. Seligowski A.V., Misganaw B., Duffy L.A., Ressler K., Guffanti G.. Leveraging large-scale genetics of PTSD and cardiovascular disease demonstrates robust shared risk and improves risk prediction accuracy. Am. J. Psychiatry. 2022; 179: 814-823. doi: 10.1176/appi.ajp.21111113.
11. Hoerster K.D., Campbell S., Dolan M., Stappenbeck C.A., Yard S., Simpson T., et al. PTSD is associated with poor health behavior and greater body mass index through depression, increasing cardiovascular disease and diabetes risk among US veterans. Prev. Med. Rep. 2019; 15: 100930. doi: 10.1016/j.pmedr.2019.100930.
12. Sumner J.A., Kubzansky L.D., Roberts A.L., Gilsanz P., Chen Q., Winning A., et al. Posttraumatic stress disorder symptoms and risk of hypertension over 22 years in a large cohort of younger and middle-aged women. Psychol. Med. 2016; 46(15): 3105-3116. doi: 10.1017/S0033291716001914.
13. Suliman S., Anthonissen L., Carr J., du Plessis S., Emsley R., Hemmings S.M., et al. Posttraumatic stress disorder, overweight, and obesity: a systematic review and meta-analysis. Harv. Rev. Psychiatry. 2016; 24(4): 271-293. doi: 10.1097/HRP.0000000000000106.
14. Šagud M., Jakšić N., Vuksan-Ćusa B., Lončar M., Lončar I., Peleš A.M., et al. Cardiovascular disease risk factors in patients with posttraumatic stress disorder (PTSD): A narrative review. Psychiatr. Danub. 2017; 29(4): 421-430. doi: 10.24869/psyd.2017.421.
15. Tahsin C.T., Michopoulos V., Powers A., Park J., Ahmed Z., Cullen K., et al. Sleep efficiency and PTSD symptom severity predict microvascular endothelial function and arterial stiffness in young, trauma-exposed women. Am. J. Physiol. Heart Circ. Physiol. 2023; 325(4): H739-H750. doi: 10.1152/ajpheart.00169.2023.
16. Fonkoue I.T., Marvar P.J., Norrholm S., Li Y., Kankam M.L., Jones T.N., et al. Symptom severity impacts sympathetic dysregulation and inflammation in post-traumatic stress disorder (PTSD). Brain Behav. Immun. 2020; 83:260-269. doi: 10.1016/j.bbi.2019.10.021.
17. Krantz D.S., Gabbay F.H., Belleau E.A., Aliaga P.A., Wynn G.H., Stein M.B., et al. PTSD, comorbidities, gender, and increased risk of cardiovascular disease in a large military cohort. medRxiv [Preprint]. 2024; 15:2024.04.13.24305769. doi: 10.1101/2024.04.13.24305769.
18. Vlastelica M. Emotional stress as a trigger in sudden cardiac death. Psychiatr. Danub. 2008; 20(3): 411-414. PMID: 18827773.
19. Stalnikowicz R., Tsafrir A. Acute psychosocial stress and cardiovascular events. Am. J. Emerg. Med. 2002; 20(5): 488-491. doi: 10.1053/ajem.2002.34788.
20. Sumner J.A., Cleveland S., Chen T., Gradus J.L. Psychological and biological mechanisms linking trauma with cardiovascular disease risk. Transl. Psychiatry. 2023; 13(1): 25. doi: 10.1038/s41398-023-02330-8.
21. Ryan M., Ryznar R. The molecular basis of resilience: A narrative review. Front. Psychiatry. 2022; 13:856998. doi: 10.3389/fpsyt.2022.856998.
22. Kilpatrick D.G., Resnick H.S., Milanak M.E., Miller M.W., Keyes K.M., Friedman M.J. National estimates of exposure to traumatic events and PTSD prevalence using DSM-IV and DSM-5 criteria. J. Trauma Stress. 2013; 26(5): 537-547. doi: 10.1002/jts.21848.
23. Breslau N. The epidemiology of posttraumatic stress disorder: What is the extent of the problem? J. Clin. Psychiatry. 2001; 62(Suppl 17): 16-22. PMID: 11495091.
24. White J., Pearce J., Morrison S., Dunstan F., Bisson J.I., Fone D.L. Risk of post-traumatic stress disorder following traumatic events in a community sample. Epidemiol. Psychiatr. Sci. 2015; 24(3): 249-257. doi: 10.1017/S2045796014000110.
25. Horn S.R., Charney D.S., Feder A. Understanding resilience: New approaches for preventing and treating PTSD. Exp. Neurol. 2016; 284 (Pt B): 119-132. doi: 10.1016/j.expneurol.2016.07.002.
26. Matar M.A., Zohar J., Cohen H. Translationally relevant modeling of PTSD in rodents. Cell Tissue Res. 2013; 354(1): 127-139. doi: 10.1007/s00441-013-1687-6.
27. Tanaka M., Szabó Á., Vécsei L. Preclinical modeling in depression and anxiety: Current challenges and future research directions. Adv. Clin. Exp. Med. 2023; 32(5): 505-509. doi: 10.17219/acem/165944.
28. Cohen H., Matar M.A., Joseph Z. Animal models of post-traumatic stress disorder. Curr. Protoc. Neurosci. 2013; 9(9): 45. doi: 10.1002/0471142301.ns0945s64.
29. Manukhina E.B., Tseilikman V.E., Komelkova M.V., Lapshin M.S., Goryacheva A.V., Kondashevskaya M.V., et al. Cardiac injury in rats with experimental posttraumatic stress disorder and mechanisms of its limitation in experimental posttraumatic stress disorder-resistant rats. J. Appl. Physiol (1985). 2021; 130: 759-771. doi: 10.1152/ japplphysiol.00694.2019.
30. Tseilikman V., Komelkova M., Kondashevskaya M.V., Manukhina E., Downey H.F., Chereshnev V., et al. A rat model of post‐traumatic stress syndrome causes phenotype‐associated morphological changes and hypofunction of the adrenal gland. Int. J. Mol. Sci. 2021; 22: 13235. doi: 10.3390/ijms222413235.
31. Kondashevskaya M.V., Tseilikman V.E., Komelkova M.V., Popkov P.N., Lapshin M.S., Platkovskii P.O., et al., Risk factors and mechanisms of cardiovascular diseases in posttraumatic stress disorder model in Wistar rats as dependent on stress resistance and age. Dokl. Biol. Sci. 2022; 505(1) :95-99. doi: 10.1134/S0012496622040020.
32. Yap J., Lim F.Y., Gao F., Teo L.L., Lam C.S., Yeo K.K. Correlation of the New York Heart Association Classification and the 6-minute walk distance: A systematic review. Clin. Cardiol. 2015; 38(10): 621-628. doi: 10.1002/clc.22468.
33. Pervanido P., Chrousos G.P. Neuroendocrinology of posttraumatic stress disorder. Prog. Brain Res. 2010; 182(9): 149-160. doi: 10.1017/s1092852900008841.
34. Кондашевская М.В., Цейликман В.Э., Комелькова М.В., Лапшин М.С., Сарапульцев А.П, Лазуко С.С., и др. Соотношение физической усталости и морфофункционального состояния миокарда при экспериментальном хроническом стрессе. Доклады Академии наук. 2019; 485(2), 247-250. https://doi.org/10.31857/S0869-56524852247-250.
35. Da Costa J.M. On irritable heart; a clinical study of a form of functional cardiac disorder and its consequences. Am. J. Med. Sci. 1871; (61): 18–52.
36. Pedersen S.S., Middel B., Larsen M.L. Posttraumatic stress disorder in first-time myocardial infarction patients. Heart Lung. 2003; 32(5): 300-307. doi:10.1016/s0147-9563(03)00097-9.
37. Kubzansky L.D., Koenen K.C., Spiro A., 3rd, Vokonas P.S., Sparrow D. Prospective study of posttraumatic stress disorder symptoms and coronary heart disease in the Normative Aging Study. Arch. Gen. Psychiatry. 2007; 64(1): 109-116. doi: 10.1037/0278-6133.28.1.125.
38. Singh J., Carleton R.N., Neary J.P. Cardiac function and posttraumatic stress disorder: a review of the literature and case report. Health Promot. Chronic Dis. Prev. Can. 2023; 43(10-11): 472-480. doi: 10.24095/hpcdp.43.10/11.05.
39. Sharkey S.W., Lesser J.R., Zenovich A.G., Maron M.S., Lindberg J., Longe T.F., et al. Acute and reversible cardiomyopathy provoked by stress in women from the United States. Circulation. 2005; 111(4): 472-479. doi: 10.1161/01.CIR.0000153801.51470.EB.
40. Akashi Y.J., Nef H.M., Mollmann H., Ueyama T. Stress cardiomyopathy. Annual Reviews. 2010; 61: 271-286. doi:10.1146/annurev.med.041908.191750.
41. Kurisu S., Inoue I., Kawagoe T., Ishihara M., Shimatani Y., Nakamura S., et al.: Time course of electrocardiographic changes in patients with tako-tsubo syndrome. Comparison with acute myocardial infarction with minimal enzymatic release. Circ. J. 2004; 68(1):77-81. doi: 10.1253/circj.68.77.
42. Kušević Z., Krstanović K., Kroflin K. Some psychological, gastrointestinal and cardiovascular consequences of earthquakes. Psychiatr. Danub. 2021; 33(Suppl 4): 1248-1253. PMID: 35503936..
43. Konopelski P., Ufnal M. Electrocardiography in rats: A comparison to human. Physiol. Res. 2016; 65(5): 717-725. doi: 10.33549/physiolres.933270.
44. Pervanido P., Chrousos G.P. Neuroendocrinology of posttraumatic stress disorder. Prog. Brain Res. 2010; 182(9): 149-160. doi:10.1016/ S0079-6123(10)82005-9.
45. Hayashi H., Wu Q., Horie M. Association between progressive intraventricular conduction disturbance and cardiovascular events. PLoS One. 2016; 11(7):e0157412. doi: 10.1371/journal.pone.0157412, 2016.
46. Rivera-Fernández R., Arias-Verdú M.D., García-Paredes T., Delgado-Rodríguez M., Arboleda-Sánchez J.A., Aguilar-Alonso E., et al. Prolonged QT interval in ST-elevation myocardial infarction and mortality: new prognostic scale with QT, Killip and age. J. Cardiovasc. Med. (Hagerstown) 2016; 17(1): 11-19. doi: 10.2459/JCM.0000000000000015.
47. Mellon S.H., Gautam A., Hammamieh R., Jett M., Wolkowitz O.M. Metabolism, metabolomics, and inflammation in posttraumatic stress disorder. Biol. Psychiatry. 2018; 83(10): 866-875. doi: 10.1016/j.biopsych.2018.02.007.
48. Rorabaugh B.R., Bui A.D., Seeley S.L., Eisenmann E.D., Rose R.M., Johnson B.L., et al. Myocardial hypersensitivity to ischemic injury is not reversed by clonidine or propranolol in a predator-based rat model of posttraumatic stress disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019; 89: 117-124. doi: 10.1016/j.pnpbp.2018.09.003.
49. Manukhina E.B., Tseilikman V.E., Karpenko M.N., Pestereva N.S., Tseilikman O.B., Komelkova M.V., et al. Intermittent hypoxic conditioning alleviates post-traumatic stress disorder-induced damage and dysfunction of rat visceral organs and brain. Int. J. Mol. Sci. 2020; 21(1): 345. doi: 10.3390/ijms21010345.
50. Török B., Sipos E., Pivac N., Zelena D. Modelling posttraumatic stress disorders in animals. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019; 90: 117-133. doi: 10.1016/j.pnpbp.2018.11.013.
51. Cho J.H., Lee I., Hammamieh R., Wang K., Baxter D., Scherler K., et al. Molecular evidence of stress-induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proc. Natl. Acad. Sci. USA. 2014; 111(8): 3188-3193. doi: 10.1073/pnas.1400113111.
52. von Kanel R., Hepp U., Traber R., Kraemer B., Mica L., Keel M., et al. Measures of endothelial dysfunction in plasma of patients with posttraumatic stress disorder. Psychiatry Res. 2008; 158(3): 363-373. doi:10.1016/j.psychres.2006.12.003.
53. Walczewska J., Rutkowski K., Wizner B. Stiffness of large arteries and cardiovascular risk in patients with post-traumatic stress disorder. Eur. Heart J. 2011; 32(6), 730-736. doi: 10.1093/eurheartj/ehq354.
54. Jenkins N.D.M. Cardiovascular consequences of posttraumatic stress disorder: Exaggerated vasoconstrictor responsiveness to personalized trauma recall. Biol. Psychiatry. 2024; 96(4): 244-246. doi: 10.1016/j.biopsych.2024.06.007.
55. Howard J.T., Sosnov J.A., Janak J.C., Gundlapalli A.V., Pettey W.B., Walker L.E. et al. Associations of initial injury severity and posttraumatic stress disorder diagnoses with long-term hypertension risk after combat injury. Hypertension. 2018; 71(5): 824-832. doi: 10.1161/HYPERTENSIONAHA.117.10496.
56. Sfera A., Osorio C., Rahman L., Zapata-Martín Del Campo C.M., Maldonado J.C., Jafri N. et al. PTSD as an endothelial disease: Insights from COVID-19. Front. Cell Neurosci. 2021; 15, 770387. doi: 10.3389/fncel.2021.770387.
57. Celano C.M., Daunis D.J., Lokko H.N., Campbell K.A., Huffman J.C. Anxiety disorders and cardiovascular disease. Curr. Psychiatry Rep. 2016; 18(11): 101. doi: 10.1007/s11920-016-0739-5.
58. Grenon S.M., Owens C.D., Alley H., Perez S., Whooley M.A., Neylan T.C., et al. Posttraumatic stress disorder is associated with worse endothelial function among veterans. J. Am. Heart Assoc. 2016; 5(3): e003010. doi: 10.1161/JAHA.115.003010.
59. Thurston R.C., Barinas-Mitchell E., von Känel R., Chang Y., Koenen K.C., Matthews K.A. Trauma exposure and endothelial function among midlife women. Menopause. 2018; 25(4): 368-374. doi: 10.1097/GME.0000000000001036.
60. Kondashevskaya M.V., Downey H.F., Tseilikman V.E., Alexandrin V.V., Artem'yeva K.A., Aleksankina V.V. et al. Cerebral blood flow in predator stress-resilient and -susceptible rats and mechanisms of resilience. Int. J. Mol. Sci. 2022; 23(23): 14729. doi: 10.3390/ijms232314729.
61. Blum K., Gondré-Lewis M.C., Modestino E.J., Lott L, Baron D., Siwicki D., et al. Understanding the scientific basis of post-traumatic stress disorder (PTSD): Precision behavioral management overrides stigmatization. Mol. Neurobiol. 2019; 56(11): 7836-7850. doi: 10.1007/s12035-019-1600-8.
62. Blum K., Giordano J., Oscar-Berman M., Bowirrat A., Simpatico T., Barh D. Diagnosis and healing in veterans suspected of suffering from post-traumatic stress disorder (PTSD) using reward gene testing and reward circuitry natural dopaminergic activation. J. Genet. Syndr. Gene Ther. 2012; 3(3): 1000116. doi: 10.4172/2157-7412.1000116.
63. Roy-Byrne P., Arguelles L., Vitek M.E., Goldberg J., Keane T.M., True W.R. et al. Persistence and change of PTSD symptomatology—A longitudinal co-twin control analysis of the Vietnam Era Twin Registry. Soc. Psychiatry Psychiatr. Epidemiol. 2004; 39(9): 681-685. doi: 10.1007/s00127-004-0810-0.
64. Curvello V., Hekierski H., Pastor P., Vavilala M.S., Armstead W.M. Dopamine protects cerebral autoregulation and prevents hippocampal necrosis after traumatic brain injury via block of ERK MAPK in juvenile pigs. Brain Res. 2017; 1670: 118-124. doi: 10.1016/j.brainres.2017.06.010.
65. Afonso-Oramas D., Cruz-Muros I., Castro-Hernández J., Salas-Hernández J., Barroso-Chinea P., García-Hernández S., et al. Striatal vessels receive phosphorylated tyrosine hydroxylase-rich innervation from midbrain dopaminergic neurons. Front. Neuroanat. 2014; 8: 84. doi: 10.3389/fnana.2014.00084.
66. Zatz R., De Nucci G. Endothelium-derived dopamine and 6-nitrodopamine in the cardiovascular system. Physiology (Bethesda). 2024; 39(1): 44-59. doi: 10.1152/physiol.00020.2023.
67. Wang H., Yao Y., Liu J., Cao Y., Si C., Zheng R. et al. Dopamine D4 receptor protected against hyperglycemia-induced endothelial dysfunction via PI3K/eNOS pathway. Biochem. Biophys. Res. Commun. 2019; 518(3): 554-559. doi: 10.1016/j.bbrc.2019.08.080.
68. Pyne-Geithman G.J., Caudell D.N., Cooper M., Clark J.F., Shutter L.A. Dopamine D2-receptor-mediated increase in vascular and endothelial NOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in vitro. Neurocrit. Care. 2009; 10(2): 225-231. doi: 10.1007/s12028-008-9143-2.
69. Karatsoreos I.N., McEwen B.S. Annual research review: the neurobiology and physiology of resilience and adaptation across the life course. J. Child Psychol. Psychiatry. 2013; 54(4): 337-347. doi: 10.1111/jcpp.12054.
70. de Kloet E.R., Joels M., Holsboer F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 2005; 6(6), 463-475. doi: 10.1038/nrn1683.
71. Lawrence S., Scofield R.H. Post traumatic stress disorder associated hypothalamic-pituitary-adrenal axis dysregulation and physical illness. Brain Behav. Immun. Health. 2024; 41:100849. doi: 10.1016/j.bbih.2024.100849.
72. Pitman R.K., Rasmusson A.M., Koenen K., Shin L.M., Orr S.P., Gilbertson M.W., et al. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 2012; 13(11): 769-787. doi: 10.1038/nrn3339.
73. Sherin J.E., Nemeroff C.B. Post-traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues Clin. Neurosci. 2011; 13(3): 263-278. doi: 10.31887/DCNS.2011.13.2/jsherin.
74. Wood S.K., Valentino R.J. The brain norepinephrine system, stress and cardiovascular vulnerability. Neurosci. Biobehav. Rev. 2017; 74(Pt B): 393-400. doi: 10.1016/j.neubiorev.2016.04.018.
75. Slavova D., Ortiz V., Blaise M., Bairachnaya M., Giros B., Isingrini E. Role of the locus coeruleus-noradrenergic system in stress-related psychopathology and resilience: Clinical and pre-clinical evidences. Neurosci Biobehav Rev. 2024; 167: 105925. doi: 10.1016/j.neubiorev.2024.105925.
76. Minassian A., Geyer M.A., Baker D.G., Nievergelt C.M., O’Connor D.T., Risbrough V.B. Heart rate variability characteristics in a large group of active-duty marines and relationship to posttraumatic stress. Psychosom. Med. 2014; 76(4): 292-301. doi: 10.1097/PSY.0000000000000056.
77. Yehuda R., Seckl J. Minireview: Stress-related psychiatric disorders with low cortisol levels: A metabolic hypothesis. Endocrinology. 2011; 152: 4496-4503. doi: 10.1210/en.2011-1218.
78. Zohar J., Yahalom H., Kozlovsky N., Cwikel-Hamzany S., Matar M.A., Kaplan Z. et al. High dose hydrocortisone immediately after trauma may alter the trajectory of PTSD: interplay between clinical and animal studies. Eur. Neuropsychopharmacol. 2011; 21(11), 796-809. doi: 10.1016/j.euroneuro.2011.06.001.
79. Tanaka M., Tóth F., Polyák H., Szabó A., Mándi Y., Vécsei L. Immune influencers in action: Metabolites and enzymes of the tryptophan-kynurenine metabolic pathway. Biomedicines. 2021; 9:734. doi: 10.3390/biomedicines9070734.
80. Tseilikman V., Lapshin M., Klebanov I., Chrousos G., Vasilieva M., Pashkov A., et al., The link between activities of hepatic 11beta-hydroxysteroid dehydrogenase-1 and monoamine oxidase-A in the brain following repeated predator stress: Focus on heightened anxiety. Int. J. Mol. Sci. 2022; 23(9): 4881. doi: 10.3390/ijms23094881.
81. Tseilikman V.E., Lapshin M.S., Komel’kova M.V., Tseilikman O.B., Deev R.V., Popkov P.N., et al. Dynamics of changes in GABA and catecholamines contents and MAO-A activity in experimental post-traumatic stress disorder in rats. Neurosci. Behav. Physiol. 2019; 49:754-758. doi: 10.1007/s11055-019-00797-x.
82. Manukhina E.B., Tseilikman V.E., Tseilikman O.B., Komelkova M.V., Kondashevskaya M.V., Goryacheva A.V., et al. Intermittent hypoxia improves behavioral and adrenal gland dysfunction induced by posttraumatic stress disorder in rats. J. Appl. Physiol. (1985). 2018; 125(3): 931-937. doi: 10.1152/japplphysiol.01123.2017.
83. Kondashevskaya M.V., Komel'kova M.V., Tseilikman V.E., Tseilikman O.B., Artem'yeva K.A., Aleksankina V.V., Boltovskaya M.N., et al., New morphofunctional criteria for resistance profile in post-traumatic stress disorder models as adrenal dysfunction trigger. Dokl. Biol. Sci. 2021; 501(1): 192-196. doi: 10.1134/S0012496621060028.
84. Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000; 21(1): 55-89. doi: 10.1210/edrv.21.1.0389.
85. Wilson C.B., McLaughlin L.D., Nair A., Ebenezer P.J., Dange R., Francis J. Inflammation and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS One. 2013; 8(10):e76146. doi: 10.1371/journal.pone.0076146.
86. Zuo C., Zhuang Z., Yang P., Zhang H., Li X., Huang T., et al. Dissecting the causal association between inflammation and post-traumatic stress disorder: A bidirectional Mendelian randomization study. J. Affect. Disord. 2023; 333:436-445. doi: 10.1016/j.jad.2023.04.080.
86. Skórzewska A., Lehner M., Wisłowska-Stanek A., Turzyńska D.., Sobolewska A, Krząścik P., et al. Individual susceptibility or resistance to posttraumatic stress disorder-like behaviours. Behav. Brain Res. 2020; 386: 112591. doi: 10.1016/j.bbr.2020.112591.
87. Sandvik A.M., Bartone P.T., Hystad S.W., Phillips T.M., Thayer J.F., Johnsen B.H. Psychological hardiness predicts neuroimmunological responses to stress. Psychol. Health Med. 2013; 18(6), 705-713. doi: 10.1080/13548506.2013.772304.
88. Schenone A.L., Jaber W.A. The neuro-hematopoietic-inflammatory arterial axis: The missing link between PTSD and cardiovascular disease? J. Nucl. Cardiol. 2021; 28(2): 695-697. doi: 10.1007/s12350-019-01748-2.
89. Miller M.W., Lin A.P., Wolf E.J., Miller D.R. Oxidative stress, inflammation, and neuroprogression in chronic PTSD. Harv. Rev. Psychiatry. 2018; 26(2): 57-69. doi: 10.1097/HRP.0000000000000167.
90. Karanikas E., Daskalakis N.P., Agorastos A. Oxidative dysregulation in early life stress and posttraumatic stress disorder: a comprehensive review. Brain Sci. 2021; 11(6):723. doi: 10.3390/brainsci11060723.
91. Wilson C.B., McLaughlin L.D., Ebenezer P.J., Nair A.R., Dange R., Harre J.G., et al. Differential effects of sertraline in a predator exposure animal model of post-traumatic stress disorder. Fron.t Behav. Neurosci 2014; 8:256. doi: 10.3389/fnbeh.2014.00256.
92. Dell'Oste V., Fantasia S., Gravina D., Palego L., Betti L., Dell'Osso L., et al. Metabolic and inflammatory response in post-traumatic stress disorder (PTSD): A systematic review on peripheral neuroimmune biomarkers. Int. J. Environ. Res. Public Health. 2023; 20(4):2937. doi: 10.3390/ijerph20042937.
93. Atli A., Bulut M., Bez Y., Kaplan İ., Özdemir P.G., Uysal C., et al. Altered lipid peroxidation markers are related to post-traumatic stress disorder (PTSD) and not trauma itself in earthquake survivors. Eur. Arch. Psychiatry Clin. Neurosci. 2016; 266(4): 329-336. doi: 10.1007/s00406-015-0638-5.
94. Marrocco I., Altieri F., Peluso I. Measurement and clinical significance of biomarkers of oxidative stress in humans. Oxid. Med. Cell Longev. 2017; 2017:6501046. doi: 10.1155/2017/6501046.
95. Rybnikova E.A., Nalivaeva N.N., Zenko M.Y., Baranova K.A. Intermittent hypoxic training as an effective tool for increasing the adaptive potential, endurance and working capacity of the brain. Front. Neurosci. 2022; 16: 941740. doi: 10.3389/fnins.2022.941740.
96. Karanikas E. Psychologically Traumatic oxidative stress; A comprehensive review of redox mechanisms and related inflammatory implications. Psychopharmacol. Bull. 2021; 51(4): 65-86.
97. Hassan M., York K.M., Li H., Li Q., Lucey D.G., Fillingim R.B., et al. Usefulness of peripheral arterial tonometry in the detection of mental stress-induced myocardial ischemia. Clin. Cardiol. 2009; 32: E1-E6. doi:10.1002/clc.20515.
98. Daiber A., Xia N., Steven S., Oelze M., Hanf A., Kröller-Schön S., et al. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int. J. Mol. Sci. 2019; 20(1):187. doi: 10.3390/ijms20010187.
99. Von Känel R., Dimsdale J.E., Patterson T.L. Grant I. Association of negative life event stress with coagulation activity in elderly Alzheimer caregivers. Psychosom. Med. 2003; 65(1): 145-150. doi: 10.1097/01.psy.0000039753.23250.20.
100. Robicsek O., Makhoul B., Klein E., Brenner B., Sarig G. Hypercoagulation in chronic post-traumatic stress disorder. Isr. Med. Assoc. J. 2011; 13(9): 548-552. PMID: 21991715.
101. Austin A.W., Wirtz P.H., Patterson S.M., Stutz M., von Känel R. Stress-induced alterations in coagulation: Assessment of a new hemoconcentration correction technique. Psychosom. Med. 2012; 74(3): 288-295. doi: 10.1097/PSY.0b013e318245d950.
102. Von Känel R., Hepp U., Buddeberg C., Keel M., Mica L., Aschbacher K., et al. Altered blood coagulation in patients with posttraumatic stress disorder. Psychosom. Med. 2006; 68(4): 598-604. doi: 10.1097/01.psy.0000221229.43272.9d.
103. Austin A.W., Wissmann T., von Känel R. Stress and hemostasis: An update. Semin. Thromb. Hemost. 2013; 39(8): 902-912. doi: 10.1055/s-0033-1357487.
104. Theofilis P., Sagris M., Oikonomou E., Antonopoulos A.S., Siasos G., Tsioufis C., et al. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines. 2021; 9(7): 781. doi: 10.3390/biomedicines9070781.
105. Roy A., Kumar Y., Verma N. Coagulopathy in acute liver failure. Best Pract. Res. Clin. Gastroenterol. 2024; 73:101956. doi: 10.1016/j.bpg.2024.101956.
106. Johnson A.M., Rose K.M., Elder G.H. Jr, Chambless L.E., Kaufman J.S., Heiss G. Military combat and burden of subclinical atherosclerosis in middle aged men: the ARIC study. Prev. Med. 2010; 50(5-6):277-81. doi: 10.1016/j.ypmed.2010.02.009.
107. Bruce K.D., Zsombok A., Eckel R.H.. Lipid processing in the brain: A key regulator of systemic metabolism. Front. Endocrinol. (Lausanne). 2017; 8:60. doi: 10.3389/fendo.2017.00060.
108. Pfrieger F.W., Ungerer N. Cholesterol metabolism in neurons and astrocytes. Prog. Lipid Res. 2011; 50(4): 357-371. doi: 10.1016/j.plipres.2011.06.002.
109. Li H.P., Cheng H.L., Ding K., Zhang Y., Gao F., Zhu G., et al. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur. J. Neurosci. 2024; 60(4): 4661-4683. doi: 10.1111/ejn.16445.
110. Seligowski A.V., Webber T.K., Marvar P.J., Ressler K.J., Philip N.S. Involvement of the brain-heart axis in the link between PTSD and cardiovascular disease. Depress. Anxiety. 2022; 39(10-11):663-674. doi: 10.1002/da.23271.
111. Krittanawong C., Maitra N.S., Khawaja M., Wang Z., Fogg S., Rozenkrantz L., et al. Association of pessimism with cardiovascular events and all-cause mortality. Prog. Cardiovasc. Dis. 2023; 76: 91-98. doi: 10.1016/j.pcad.2022.11.018.
112. Kondashevskaya M.V., Mikhaleva L.M., Artem'yeva K.A., Aleksankina V.V., Areshidze D.A., Kozlova M.A., Unveiling the link: exploring mitochondrial dysfunction as a probable mechanism of hepatic damage in post-traumatic stress syndrome. Int. J. Mol. Sci. 2023; 24(16): 13012. doi: 10.3390/ijms241613012.
113. Rebolledo-Solleiro D., Roldán-Roldán G., Díaz D., Velasco M., Larqué C., Rico-Rosillo G., et al. Increased anxiety-like behavior is associated with the metabolic syndrome in non-stressed rats. PLoS One. 2017; 12(5):e0176554. doi: 10.1371/journal.pone.0176554.
Published
2025-06-22
How to Cite
Manukhina E. B., Kondashevskaya M. V., Budanova O. P., Tseilikman V. E., Downey H. F. Mechanisms of cardiovascular resistance to injury in post-traumatic stress disorder // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2025. VOL. 69. № 2. PP. 97–107.
Section
Reviews