The role of matrix metalloproteinases in the development of atherosclerosis

  • Nadezhda Vladimirovna Izmozherova Ural State Medical University of Ministry of Public Health of the Russian Federation, 3 Repina Str., Ekaterinburg, 620028, Russian Federation https://orcid.org/0000-0001-7826-9657
  • Artem Anatolyevich Popov Ural State Medical University of Ministry of Public Health of the Russian Federation, 3 Repina Str., Ekaterinburg, 620028, Russian Federation https://orcid.org/0000-0001-6216-2468
  • Muraz Akbar oglu Shambatov Ural State Medical University of Ministry of Public Health of the Russian Federation, 3 Repina Str., Ekaterinburg, 620028, Russian Federation https://orcid.org/0000-0001-7312-415X
  • Alisa Kirillovna Kozhevnikova Ural State Medical University of Ministry of Public Health of the Russian Federation, 3 Repina Str., Ekaterinburg, 620028, Russian Federation https://orcid.org/0009-0003-9605-1290
  • Anastasia Viktorovna Melkova Ural State Medical University of Ministry of Public Health of the Russian Federation, 3 Repina Str., Ekaterinburg, 620028, Russian Federation https://orcid.org/0009-0003-5487-7502
Keywords: atherosclerosis, ischemic heart disease, coronary atherosclerosis, myocardial infarction, MMP

Abstract

The physiological role of matrix metalloproteinases (MMPs) is the regulation of the extracellular matrix. During the development of a number of pathological processes, the secretion of MMPs by mesenchymal cells and immunocompetent cells increases significantly, which consistently causes matrix remodeling. The importance of MMPs is extremely latitudinous and extends to many areas of health care. MMPs are known to be involved in the process of tumor metastasis, therefore, studying their activity can help in the development of new methods for diagnosing and treating malignant neoplasms. Moreover, MMPs are associated with cartilage degradation in osteoarthritis. Their in-hibitors can be used to slow down the progression of the disease. In the aspect of cardiovascular pathology, MMPs attract attention due to their significant participation in vascular wall remodeling. The aim of the study was to clarify the role of MMPs in the pathogenesis of coronary atherosclero-sis based on the analysis of scientific literature with elements of a systematic review. Articles were searched in three online databases (PubMed, Google Scholar, and Cyberleninka). The inclusion criteria were full-text original articles in English and Russian, reports on MMPs in atherosclerosis and/or ischemic heart disease, and clinical trials. The exclusion criteria were conference abstracts, editorials, newsletters, books, and book chapters. Multiple cardiovascular pathologies, including atherosclerosis, largely depend on extracellular matrix turnover. An imbalance between MMPs and their tissue inhibitors leads to proteolytic activity dysregulation and adverse extracellular matrix remodeling, which is associated with the progression and instability of atherosclerotic plaques in the coronary arteries. Increased activity of MMPs, as well as their imbalance with tissue inhibitors of MMPs, results in remodeling of the extracellular matrix, which makes the atherosclerotic plaque more susceptible to rupture. Since excessive tissue remodeling and increased MMP activity are parts of the pathogenesis of atherosclerotic lesions, MMPs remain an attractive target for the development of anti-atherosclerotic drugs.

Downloads

Download data is not yet available.

References

1. Ежов М.В., Кухарчук В.В., Сергиенко И.В., Алиева А.С., Анциферов М.Б., Аншелес А.А., Арабидзе Г.Г., Аронов Д.М., Арутюнов Г.П., Ахмеджанов Н.М., Балахонова Т.В., Барбараш О.Л., Бойцов С.А., Бубнова М.Г., Воевода М.И., Галстян Г.Р., Галявич А.С., Горнякова Н.Б., Гуревич В.С., Дедов И.И., Драпкина О.М., Дупляков Д.В., Ерегин С.Я., Ершова А.И., Иртюга О.Б., Карпов С.Р., Карпов Ю.А., Качковский М.А., Кобалава Ж.Д., Козиолова Н.А., Коновалов Г.А., Константинов В.О., Космачева Е.Д., Котовская Ю.В., Мартынов А.И., Мешков А.Н., Небиеридзе Д.В., Недогода С.В., Обрезан А.Г., Олейников В.Э., Покровский С.Н., Рагино Ю.И., Ротарь О.П., Скибицкий В.В., Смоленская О.Г., Соколов А.А., Сумароков А.Б., Филиппов А.Е., Халимов Ю.Ш., Чазова И.Е., Шапошник И.И., Шестакова М.В., Якушин С.С., Шляхто Е.В. Нарушения липидного обмена. Клинические рекомендации 2023. Российский кардиологический журнал. 2023;28(5):5471. https://doi.org/10.15829/1560-4071-2023-5471 Ezhov M.V., Kukharchuk V.V., Sergienko i.V., Alieva A.S., Antsiferov M.B., Ansheles A.A., Arabidze G.G., Aronov D.M., Arutyunov G.P., Akhmedzhanov N.M., Balakhonova T.V., Barbarash O.L., Boytsov S.A., Bubnova M.G., Voevoda M.I., Galstyan G.R., Galyavich A.S., Gornyakova N.B., Gurevich V.S., Dedov I.I., Drapkina O.M., Duplyakov D.V., Eregin S.Ya., Ershova A.I., Irtyuga O.B., Karpov R.S., Karpov Yu.A., Kachkovsky M.A., Kobalava Zh.D., Koziolova N.A., Konovalov G.A., Konstantinov V.O., Kosmacheva E.D., Kotovskaya Yu.V., Martynov A.I., Meshkov A.N., Nebieridze D.V., Nedogoda S.V., Obrezan A.G., Oleinikov V.E., Pokrovsky S.N., Ragino Yu.I., Rotar O.P., Skibitsky V.V., Smolenskaya O.G., Sokolov A.A., Sumarokov A.B., Filippov E., Halimov Yu.Sh., Chazova I.E., Shaposhnik I.I., Shestakova M.V., Yakushin S.S., Shlyakhto E.V. Disorders of lipid metabolism. Clinical Guidelines 2023. Russian Journal of Cardiology. 2023;28(5):5471. (In Russ.) https://doi.org/10.15829/1560-4071-2023-5471
2. Chávez-Sánchez L, Espinosa-Luna JE, Chávez-Rueda K, Legorreta-Haquet MV, Montoya-Díaz E, Blanco-Favela F. Innate immune system cells in atherosclerosis. Arch Med Res. 2014 Jan;45(1):1-14. doi: 10.1016/j.arcmed.2013.11.007. Epub 2013 Dec 8. PMID: 24326322.
3. Libby P, Hansson GK. Inflammation and immunity in diseases of the arterial tree: players and layers. Circ Res. 2015 Jan 16;116(2):307-11. doi: 10.1161/CIRCRESAHA.116.301313. PMID: 25593275; PMCID: PMC4299915.
4. Ross R. Atherosclerosis--an inflammatory disease. N Engl J Med. 1999 Jan 14;340(2):115-26. doi: 10.1056/NEJM199901143400207. PMID: 9887164
5. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci. 2020;21(24):9739. Published 2020 Dec 20. doi:10.3390/ijms21249739
6. Matrix metalloproteinases, vascular remodeling, and vascular disease/ Wang X., Khalil R.A. // Adv. Pharm. – 2018. - C.241–330
7. Marino-Puertas L, Goulas T, Gomis-Rüth FX. Matrix metalloproteinases outside vertebrates. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt A):2026-2035. doi: 10.1016/j.bbamcr.2017.04.003. Epub 2017 Apr 7. PMID: 28392403
8. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res. 2002 Feb 22;90(3):251-62. PMID: 11861412.
9. Matrix metalloproteinases – From the cleavage data to the prediction tools and beyond/ Cieplak P., Strongin A.Y. // Biochim Biophys Acta. - 2017. - doi: 10.1016/j.bbamcr.2017.03.010.
10. Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res. 2014;114(5):872-888. doi:10.1161/CIRCRESAHA.114.302533
11. Spinale FG, Villarreal F. Targeting matrix metalloproteinases in heart disease: lessons from endogenous inhibitors. Biochem Pharmacol. 2014;90(1):7-15. doi:10.1016/j.bcp.2014.04.011
12. Morris DR, Biros E, Cronin O, Kuivaniemi H, Golledge J. The association of genetic variants of matrix metalloproteinases with abdominal aortic aneurysm: a systematic review and meta-analysis. Heart. 2014;100(4):295-302. doi:10.1136/heartjnl-2013-304129
13. Vacek TP, Rehman S, Neamtu D, Yu S, Givimani S, Tyagi SC. Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vasc Health Risk Manag. 2015;11:173-183. Published 2015 Feb 27. doi:10.2147/VHRM.S68415
14. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852-1866. doi:10.1161/CIRCRESAHA.114.302721
15. Johnson J. L. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Review of Cardiovascular Therapy . 2007;5(2):265–282. doi: 10.1586/14779072.5.2.265.
16. Shah P. K. Biomarkers of plaque instability. Current Cardiology Reports . 2014;16 doi: 10.1007/s11886-014-0547-7.547
17. Johnson JL, Jenkins NP, Huang WC, et al. Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm. 2014;2014:276457. doi:10.1155/2014/276457
18. Kremastiotis G, Handa I, Jackson C, George S, Johnson J. Disparate effects of MMP and TIMP modulation on coronary atherosclerosis and associated myocardial fibrosis. Sci Rep. 2021;11(1):23081. Published 2021 Nov 30. doi:10.1038/s41598-021-02508-4
19. Sakakura K., Nakano M., Otsuka F., Ladich E., Kolodgie F. D., Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart, Lung and Circulation. 2013;22(6):399–411. doi: 10.1016/j.hlc.2013.03.001.
20. Falk E., Nakano M., Bentzon J. F., Finn A. V., Virmani R. Update on acute coronary syndromes: the pathologists’ view. European Heart Journal. 2013;34(10):719–728. doi: 10.1093/eurheartj/ehs411
21. Loftus I. Mechanisms of plaque rupture. In: Fitridge R., Thompson M., editors. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists . University of Adelaide Press; 2011. p. p. 4
22. Lee S. J., Seo K. W., Yun M. R., et al. 4-Hydroxynonenal enhances MMP-2 production in vascular smooth muscle cells via mitochondrial ROS-mediated activation of the Akt/NF-κB signaling pathways. Free Radical Biology and Medicine . 2008;45(10):1487–1492. doi: 10.1016/j.freeradbiomed.2008.08.022
23. Leonarduzzi G., Chiarpotto E., Biasi F., Poli G. 4-Hydroxynonenal and cholesterol oxidation products in atherosclerosis. Molecular Nutrition & Food Research . 2005;49(11):1044–1049. doi: 10.1002/mnfr.200500090
24. Newby A. C., Zaltsman A. B. Fibrous cap formation or destruction—the critical importance of vascular smooth muscle cell proliferation, migration and matrix formation. Cardiovascular Research . 1999;41(2):345–360. doi: 10.1016/S0008-6363(98)00286-7.
25. Samah N, Ugusman A, Hamid AA, Sulaiman N, Aminuddin A. Role of Matrix Metalloproteinase-2 in the Development of Atherosclerosis among Patients with Coronary Artery Disease. Mediators Inflamm. 2023 Jul 7;2023:9715114. doi: 10.1155/2023/9715114. PMID: 37457745; PMCID: PMC10348858.
26. Massberg S, Brand K, Grüner S, Page S, Müller E, Müller I, Bergmeier W, Richter T, Lorenz M, Konrad I, Nieswandt B, Gawaz M. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med. 2002 Oct 7;196(7):887-96. doi: 10.1084/jem.20012044. PMID: 12370251; PMCID: PMC2194025
27. Simões G, Pereira T, Caseiro A. Matrix metaloproteinases in vascular pathology. Microvasc Res. 2022;143:104398. doi:10.1016/j.mvr.2022.104398
28. King SM, McNamee RA, Houng AK, Patel R, Brands M, Reed GL. Platelet dense-granule secretion plays a critical role in thrombosis and subsequent vascular remodeling in atherosclerotic mice. Circulation. 2009 Sep 1;120(9):785-91. doi: 10.1161/CIRCULATIONAHA.108.845461. Epub 2009 Aug 17. PMID: 19687360; PMCID: PMC2761818.
29. Gresele P, Falcinelli E, Sebastiano M, Momi S. Matrix Metalloproteinases and Platelet Function. Prog Mol Biol Transl Sci. 2017;147:133-165. doi: 10.1016/bs.pmbts.2017.01.002. Epub 2017 Mar 21. PMID: 28413027.
30. Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med. 2010 Feb;5(1):13-25. doi: 10.1007/s11739-009-0283-y. Epub 2009 Jul 21. Erratum in: Intern Emerg Med. 2010 Feb;5(1):89. PMID: 19626421.
31. Frenette PS, Moyna C, Hartwell DW, Lowe JB, Hynes RO, Wagner DD. Platelet-endothelial interactions in inflamed mesenteric venules. Blood. 1998 Feb 15;91(4):1318-24. PMID: 9454762.
32. Sluijter JP, Pulskens WP, Schoneveld AH, Velema E, Strijder CF, Moll F, de Vries JP, Verheijen J, Hanemaaijer R, de Kleijn DP, Pasterkamp G. Matrix metalloproteinase 2 is associated with stable and matrix metalloproteinases 8 and 9 with vulnerable carotid atherosclerotic lesions: a study in human endarterectomy specimen pointing to a role for different extracellular matrix metalloproteinase inducer glycosylation forms. Stroke. 2006 Jan;37(1):235-9. doi: 10.1161/01.STR.0000196986.50059.e0. Epub 2005 Dec 8. PMID: 16339461
33. Kuzuya M, Nakamura K, Sasaki T, Cheng XW, Itohara S, Iguchi A. Effect of MMP-2 deficiency on atherosclerotic lesion formation in apoE-deficient mice. Arterioscler Thromb Vasc Biol. 2006 May;26(5):1120-5. doi: 10.1161/01.ATV.0000218496.60097.e0. Epub 2006 Mar 23. PMID: 16556856.
34. Sai L., YanQiu Z., DongMei C., YinJun L. Effect of rosuvastatin and benazepril on matrix metalloproteinase-2, matrix metalloproteinase-9 and leukotriene B4 of patients with acute myocardial infarction. Tropical Journal of Pharmaceutical Research . 2019;18(3):625–630. doi: 10.4314/tjpr.v18i3.26.
35. Li Y., Li L., Wang K., Wu P., Cui Y. Investigation on risk stratification and the prognostic value of hs-TnT combined with MMP-2 in patients with acute coronary syndrome. BioMed Research International . 2021;2021:5. doi: 10.1155/2021/1040171.1040171
36. Murashov I. S., Volkov A. M., Kazanskaya G. M., et al. Immunohistochemical features of different types of unstable atherosclerotic plaques of coronary arteries. Bulletin of Experimental Biology and Medicine . 2018;166:102–106. doi: 10.1007/s10517-018-4297-1.
37. Owolabi U. S., Amraotkar A. R., Coulter A. R., et al. Change in matrix metalloproteinase 2, 3, and 9 levels at the time of and after acute atherothrombotic myocardial infarction. Journal of Thrombosis and Thrombolysis . 2020;49:235–244. doi: 10.1007/s11239-019-02004-7.
38. Abbas A, Aukrust P, Russell D, et al. Matrix metalloproteinase 7 is associated with symptomatic lesions and adverse events in patients with carotid atherosclerosis. PLoS One. 2014;9(1):e84935. Published 2014 Jan 6. doi:10.1371/journal.pone.0084935
39. Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators Inflamm. 2013;2013:659282. doi:10.1155/2013/659282
40. Vandooren J., Van den Steen P.E., Opdenakker G. Biochemistry and Molecular Biology of Gelatinase B or Matrix Metalloproteinase-9 (MMP-9): The next Decade. Crit. Rev. Biochem. Mol. Biol. 2013;48:222–272. doi: 10.3109/10409238.2013.770819.
41. Florence JM, Krupa A, Booshehri LM, Allen TC, Kurdowska AK. Metalloproteinase-9 contributes to endothelial dysfunction in atherosclerosis via protease activated receptor-1. PLoS One. 2017;12(2):e0171427. Published 2017 Feb 6. doi:10.1371/journal.pone.0171427
42. Guizani I, Zidi W, Zayani Y, et al. Matrix metalloproteinase 3 and 9 as genetic biomarkers for the occurrence of cardiovascular complications in coronary artery disease: a prospective cohort study. Mol Biol Rep. 2022;49(10):9171-9179. doi:10.1007/s11033-022-07742-1
43. Nagase H., Woessner J.F. Matrix Metalloproteinases. J. Biol. Chem. 1999;274:21491–21494. doi: 10.1074/jbc.274.31.21491
44. Mangge H, Almer G. Immune-Mediated Inflammation in Vulnerable Atherosclerotic Plaques. Molecules. 2019;24(17):3072. Published 2019 Aug 23. doi:10.3390/molecules24173072
45. Vandooren J, Born B, Solomonov I, et al. Circular trimers of gelatinase B/matrix metalloproteinase-9 constitute a distinct population of functional enzyme molecules differentially regulated by tissue inhibitor of metalloproteinases-1. Biochem J. 2015;465(2):259-270. doi:10.1042/BJ20140418
46. Li L, Li J, Yi J, Liu H, Lei H. Dose-Effect of Irbesartan on Cyclooxygenase-2 and Matrix Metalloproteinase-9 Expression in Rabbit Atherosclerosis. J Cardiovasc Pharmacol. 2018;71(2):82-94. doi:10.1097/FJC.0000000000000544
47. Chen Y, Waqar AB, Nishijima K, et al. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med. 2020;24(7):4261-4274. doi:10.1111/jcmm.15087
48. Jin ZX, Xiong Q, Jia F, Sun CL, Zhu HT, Ke FS. Investigation of RNA interference suppression of matrix metalloproteinase-9 in mouse model of atherosclerosis. Int J Clin Exp Med. 2015;8(4):5272-5278. Published 2015 Apr 15
49. Gu C, Wang F, Hou Z, et al. Sex-related differences in serum matrix metalloproteinase-9 screening non-calcified and mixed coronary atherosclerotic plaques in outpatients with chest pain. Heart Vessels. 2017;32(12):1424-1431. doi:10.1007/s00380-017-1014-3
50. Silvello D, Narvaes LB, Albuquerque LC, et al. Serum levels and polymorphisms of matrix metalloproteinases (MMPs) in carotid artery atherosclerosis: higher MMP-9 levels are associated with plaque vulnerability. Biomarkers. 2014;19(1):49-55. doi:10.3109/1354750X.2013.866165
51. Heo SH, Cho CH, Kim HO, Jo YH, Yoon KS, Lee JH, Park JC, Park KC, Ahn TB, Chung KC, Yoon SS, Chang DI. Plaque rupture is a determinant of vascular events in carotid artery atherosclerotic disease: involvement of matrix metalloproteinases 2 and 9. J Clin Neurol. 2011;7:69–76. doi: 10.3988/jcn.2011.7.2.69.
52. Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, Thompson MM. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke. 2000;31:40–47. doi: 10.1161/01.str.31.1.40.
53. Bräuninger H, Krüger S, Bacmeister L, Nyström A, Eyerich K, Westermann D, Lindner D. Matrix metalloproteinases in coronary artery disease and myocardial infarction. Basic Res Cardiol. 2023 May 9;118(1):18. doi: 10.1007/s00395-023-00987-2. PMID: 37160529; PMCID: PMC10169894
54. Ruddy JM, Ikonomidis JS, Jones JA. Multidimensional Contribution of Matrix Metalloproteinases to Atherosclerotic Plaque Vulnerability: Multiple Mechanisms of Inhibition to Promote Stability. J Vasc Res. 2016;53(1-2):1-16. doi:10.1159/000446703
55. Levin M, Udi Y, Solomonov I, Sagi I. Next generation matrix metalloproteinase inhibitors - Novel strategies bring new prospects. Biochim Biophys Acta Mol Cell Res. 2017;1864(11 Pt A):1927-1939. doi:10.1016/j.bbamcr.2017.06.009
56. Amar S, Minond D, Fields GB. Clinical Implications of Compounds Designed to Inhibit ECM-Modifying Metalloproteinases. Proteomics. 2017;17(23-24):10.1002/pmic.201600389. doi:10.1002/pmic.201600389
57. Fields GB. Mechanisms of Action of Novel Drugs Targeting Angiogenesis-Promoting Matrix Metalloproteinases. Front Immunol. 2019;10:1278. Published 2019 Jun 4. doi:10.3389/fimmu.2019.01278

Published
2025-06-23
How to Cite
Izmozherova N. V., Popov A. A., Shambatov M. A. oglu ., Kozhevnikova A. K. ., Melkova A. . V. The role of matrix metalloproteinases in the development of atherosclerosis // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2025. VOL. 69. № 2. PP. 117–126.
Section
Reviews