The effect of polylactide wound dressings with pro- and antioxidant components on thiol homeostasis and the activity of superoxide dismutase and catalase in rats with full-thickness skin defects

  • Alexey Nikolaevich Ivanov V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0003-4061-5221
  • Maxim Alekseevich Sahan V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation
  • Alexey Vadimovich Ermakov V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0001-8105-5932
  • Angelina Albertovna Savkina V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation
  • Tatyana Vyacheslavovna Stepanova V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0001-8439-8033
  • Victoria Viktorovna Nikitina V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0002-8893-8612
  • Ekaterina Vladimirovna Lengert V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0002-6447-2811
  • Tatyana Svyatoslavovna Kiriyazi V.I. Razumovsky Saratov State Medical University of the Ministry of Healthcare of the Russian Federation, 112 Bolshaya Kazachya str., 410012, Saratov, Russian Federation https://orcid.org/0000-0003-1180-5560
Keywords: wound dressings, wound defect of the skin, tannic acid, sodium percarbonate, antioxidants, polylactic acid.

Abstract

Introduction. Free radical processes are an integral part of wound healing, on the one hand having an altering effect on one’s own tissues, and on the other hand being important regulators of reparative processes. The use of targeted delivery of pro-oxidants and antioxidants in wound treatment opens up new prospects for improving outcomes of regeneration. In this regard, the aim of this study was to investigate the effect of microchamber polylactide wound dressings providing targeted delivery of pro- and antioxidant components on the state of enzymatic and non-enzymatic components of antioxidant protection in rats with full-thickness skin surgical wounds.

Methodology. The study was carried out on 81 white male rats, divided into five groups: control (n=9), comparison (n=18), three experimental (n=18 each). In animals of the comparison and experimental groups a model of a skin wound 10x10 mm was surgically created. In animals of experimental group No. 1 a polylactide microchamber wound dressings without active components were applied to the formed skin defect. Rats of experimental groups No. 2 and 3 received a similar dressings, the microchambers of which were loaded with tannic acid and sodium percarbonate, respectively. The activity of superoxide dismutase and catalase, as well as serum concentration of total thiol groups, were assessed.

Results and conclusions. It was revealed that skin damage cause changes of enzymatic and non-enzymatic components of antioxidant protection. The use of a polylactide microchamber wound dressings loaded with tannic acid neutralizes changes in the parameters of antioxidant protection, preventing a decrease in the concentration of thiol groups and an increase in the activity of superoxide dismutase and catalase. The use of a polylactide microchamber wound dressings loaded with sodium percarbonate in the area of the wound defect provides reducing of the activity of superoxide dismutase and restoring the concentration of thiol groups in the blood serum at the later stages of the reparative process, but has no significant effect on the activity of catalase.

Thus, loading pro- and antioxidant components into a microchamber polylactide dressings allows to correct changes in thiol status, superoxide dismutase and catalase activity in rats with full-thickness skin defects.

Downloads

References

Литература
(п.п. 2-3; 8-18; 21-31; 33-34 см. References)
1. Бобылев С.Н., Бурлакова Е.А., Ваган И.С., Васильев И.В., и др. М. Российский статистический ежегодник. 2022; 76: 691.
4. Кириязи Т.С., Ермаков А.В., Савкина А.А., Ленгерт Е.В., Степанова Т.В., Лойко Д.Д., Кузнецова Н.А., Иванов А.Н. Влияние микрокамерных раневых покрытиий на динаммику микроциркуляторных реакций в зоне полнослойного дефекта кожи у белых крыс. Регионарное кровообращение и микроциркуляция. 2022; 21(2): 43-50. doi:10.24884/1682-6655-2022-21-2-43-50
5. Иванов А.Н., Ермаков А.В., Ленгерт Е.В., Степанова Т.В., Савкина А.А., Кириязи Т.С. Раневое микрокамерное покрытие из полилактида и способ его получения. Патент №2023117375/04(037127); заявл. 30.06.2023. Решение о выдаче от 12.12.2023.
6. Муромцева Е.В., Сергацкий К.И., Никольский В.И., Шабров А.В., Альджабр М., Захаров А.Д. Лечение ран в зависимости от фазы раневого процесса. Известия высших учебных заведений. Поволжский регион. Медицинские науки. 2022; 3(63): 93-109.
19. Харечкина Е.С., Никифорова А.Б. Механизмы генерации активных форм кислорода при пермеабилизации митохондриальных мембран. Современные проблемы науки и образования. 2018; 4. doi:10.17513/spno.27719
20. Калинина Е.В., Чернов Н.Н., Новичкова М.Д. Роль глутатиона, глутатиотрансферазы и глутаредоксина в регуляции редокс-зависимых процессов. Biochemistry (Moscow). 2014; 79(13): 1562-1583.
32. Зиятдинова Г.К., Будников Х.К. Природные фенольные антиоксиданты в биоаналитической химии: современное состояние и перспективы развития. Russ chem rev. 2015; 84 (2): 194–224.
References
1. Bobylev S.N., Burlakova E.A., Vagan I.S., Vasiliev I.V., et al. M. Russian Statistical Yearbook. 2022; 76: 691. (In Russian)
2. Verdolino D.V., Thomason H.A., Fotticchia A, Cartmell S. Wound dressings: curbing inflammation in chronic wound healing. Emerg Top Life Sci. 2021 Oct 29; 5(4): 523-537.
3. Bi H., Feng T., Li B., Han Y. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing. Polymers (Basel). 2020; 12 (4): 839.
4. Kiriiazi T.S., Ermakov A.V., Savkina A.A., Lengert E.V., Stepanova T.V., Loiko D.D., Kuznetsova N.A., Ivanov A.N. The microchamber wound coatings effect on the microcirculatory reactions dynamics in the full-thickness skin defect area in white rats. Regional blood circulation and microcirculation. 2022; 21(2): 43-50. doi:10.24884/1682-6655-2022-21-2-43-50 (In Russian)
5. Ivanov A.N., Ermakov A.V., Lengert E.V., Stepanova T.V, Savkina A.A., Kiriyazi T.S. Wound microchamber coating made of polylactide and method for its production. Patent 2023117375/04(037127), RF; 2023. (In Russian)
6. Muromtseva E.V., Sergatskiy K.I., Nikol'skiy V.I., Shabrov A.V., Al'dzhabr M., Zakharov A.D. Treatment of wounds depending on the phase of the wound process. News of higher educational institutions. Volga region. Medical Sciences. 2022; 3(63): 93-109. (In Russian)
7. Deng L., Du C., Song P., et al. The Role of Oxidative Stress and Antioxidants in Diabetic Wound Healing. Oxid Med Cell Longev. 2021: 8852759. Published 2021 Feb 4. doi:10.1155/2021/8852759
8. Fang K., Gu Q., Zeng M., Huang Z., Qiu H., Miao J. et al. Tannic acid-reinforced zwitterionic hydrogels with multi-functionalities for diabetic wound treatment. Journal of materials chemistry. B. 2022; 10(22): 4142–4152.
9. Zhu G., Wang Q., Lu S., Niu Y. Hydrogen Peroxide: A Potential Wound Therapeutic Target?. Med Princ Pract. 2017; 26(4): 301-308. doi:10.1159/000475501
10. Lewandowski L., Kepinska M., & Milnerowicz H. The copper-zinc superoxide dismutase activity in selected diseases. European journal of clinical investigation. 2019; 49(1): e13036. doi.org/10.1111/eci.13036
11. Nandi A., Yan L.J., Jana C.K., & Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative medicine and cellular longevity. 2019; 9613090. doi.org/10.1155/2019/9613090
12. Comini M.A. Measurement and meaning of cellular thiol: disufhide redox status. Free radical research. 2016; 50(2): 246–271. doi.org/10.3109/10715762.2015.1110241
13. Bertheloot D., Latz E. HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol. 2017; 14(1): 43-64. doi:10.1038/cmi.2016.34
14. Shih C.P., Kuo C.Y., Lin Y.Y., et al. Inhibition of Cochlear HMGB1 Expression Attenuates Oxidative Stress and Inflammation in an Experimental Murine Model of Noise-Induced Hearing Loss. Cells. 2021; 10(4): 810. Published 2021 Apr 5. doi:10.3390/cells10040810
15. Antonucci S., Di Sante M., Tonolo .F, et al. The Determining Role of Mitochondrial Reactive Oxygen Species Generation and Monoamine Oxidase Activity in Doxorubicin-Induced Cardiotoxicity. Antioxid Redox Signal. 2021; 34(7): 531-550. doi:10.1089/ars.2019.7929
16. Filipovic M.R., Koppenol W.H. The Haber-Weiss reaction - The latest revival. Free Radic Biol Med. 2019; 145: 221-222. doi:10.1016/j.freeradbiomed.2019.09.017
17. Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules. 2023; 13(9): 1291. Published 2023 Aug 24. doi:10.3390/biom13091291
18. Espindola K.M.M., Varela E.L.., de Albuquerque R.F.V., et al. Alpha-Lipoic Acid and Its Enantiomers Prevent Methemoglobin Formation and DNA Damage Induced by Dapsone Hydroxylamine: Molecular Mechanism and Antioxidant Action. Int J Mol Sci. 2022;.24(1):.57. Published 2022 Dec 21. doi:10.3390/ijms24010057
19. Kharechkina, Ekaterina & Nikiforova, A.B.. Mechanisms of reactive oxygen species production upon permeabilization of mitochondrial membranes. Modern Problems of Science and Education. 2018; 4. doi:10.17513/spno.27719. (In Russian)
20. Orfanopoulos M. Singlet Oxygen: Discovery, Chemistry, C60 -Sensitization. Photochemistry and photobiology. 2021; 97(6): 1182–1218. doi.org/10.1111/php.13486
21. Zhao H., Zhang R., Yan X., Fan K. Superoxide dismutase nanozymes: an emerging star for anti-oxidation. J Mater Chem B. 2021; 9(35): 6939-6957. Published 2021 Sep 15. doi:10.1039/d1tb00720c
22. Tokuda E., Marklund S.L., Furukawa Y. Prion-like Properties of Misfolded Cu/Zn-superoxide Dismutase in Amyotrophic Lateral Sclerosis: Update and Perspectives. Yakugaku Zasshi. 2019; 139(7): 1015-1019. doi:10.1248/yakushi.18-00165-5
23. Zelko I.N., Mariani T.J., Folz R.J. Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free radical biology & medicine. 2002; 33(3): 337–349. doi.org/10.1016/s0891-5849(02)00905-x
24. Zheng M., Liu Y., Zhang G., Yang Z., Xu W., Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants (Basel). 2023; 12(9): 1675. Published 2023 Aug 27. doi:10.3390/antiox12091675
25. Eleutherio E.C.A., Silva Magalhaes R.S., de Araujo Brasil A., Monteiro Neto J.R., de Holanda Paranhos L. SOD1, more than just an antioxidant. Arch Biochem Biophys. 2021; 697: 108701. doi:10.1016/j.abb.2020.108701
26. Hur J., Kang E.S., Hwang J.S., et al. Peroxisome proliferator-activated receptor-δ-mediated upregulation of catalase helps to reduce ultraviolet B-induced cellular injury in dermal fibroblasts. J Dermatol Sci. 2021; 103(3): 167-175. doi:10.1016/j.jdermsci.2021.08.003
27. Chakravarti R., Gupta K., Majors A., Ruple L., Aronica M., Stuehr D.J. Novel insights in mammalian catalase heme maturation: effect of NO and thioredoxin-1. Free Radic Biol Med. 2015; 82: 105-113. doi:10.1016/j.freeradbiomed.2015.01.030
28. Oliveira P.V.S., Laurindo F.R.M. Implications of plasma thiol redox in disease. Clin Sci (Lond). 2018; 132(12): 1257-1280. Published 2018 Jun 21. doi:10.1042/CS20180157
29. Kalinina E.V., Chernov N.N., Novichkova M.D. Biochemistry (Moscow). Role of glutathione, glutathione transferase, and glutaredoxin in regulation of redox-dependent processes. 2014; 79(13): 1562-1583. (In Russian)
30. Fadilah N.I.M, Phang S.J., Kamaruzaman N., Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB.Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel). 2023 Mar 23; 12(4): 787.
31. Cheng M, Hu L, Xu G, Pan P, Liu Q, Zhang Z, He Z, Wang C, Liu M, Chen L, Chen J. Tannic acid-based dual-network homogeneous hydrogel with antimicrobial and pro-healing properties for infected wound healing. Colloids Surf B Biointerfaces. 2023; Jul; 227: 113354.
32. Ziyatdinova G.K., Budnikov H.C. Natural phenolic antioxidants in bioanalytical chemistry: state of the art and prospects of development. Russian Chemical Reviews. 2015; 84 (2): 194–224. (In Russian).
33. Loo, A. E., Wong, Y. T., Ho, R., Wasser, M., Du, T., Ng, W. T., & Halliwell, B. Effects of hydrogen peroxide on wound healing in mice in relation to oxidative damage. PloS one. 2012; 7(11): e49215. doi:10.1371/journal.pone.0049215
34. Heck D.E., Shakarjian M, Kim H.D., Laskin J.D., Vetrano A.M. Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci. 2010; 1203: 120-125. doi:10.1111/j.1749-6632.2010.05603.x
Published
2024-06-23
How to Cite
Ivanov A. N., Sahan M. A., Ermakov A. V., Savkina A. A., Stepanova T. V., Nikitina V. V., Lengert E. V., Kiriyazi T. S. The effect of polylactide wound dressings with pro- and antioxidant components on thiol homeostasis and the activity of superoxide dismutase and catalase in rats with full-thickness skin defects // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2024. VOL. 68. № 2. PP. 57–67.
Section
Original research