NEUTROPHILS, LYMPHOCYTES AND THEIR RATIO AS PREDICTORS OF OUTCOMES IN PATIENTS WITH COVID-19

Keywords: COVID-19, neutrophils, lymphocytes

Abstract

Background. There have been practically no reports that describe, in early stages of COVID-19, simple methods to predict the outcome of this insidious disease. At the same time, predictors of favorable or fatal COVID-19 outcome are important, since they would allow clinicians to adjust treatment in a timely manner. Aim. To develop simple and affordable predictors that are highly likely to forecast outcome at early stages of COVID-19. Methods. The study was conducted in 125 patients with COVID-19, in whom the number of leukocytes, neutrophils, lymphocytes, and the neutrophil/lymphocyte ratio (NEU/LYM) were determined on days 1, 5, 7, 10, 14, and 21 of hospitalization. To calculate predictive threshold values of survival and mortality, ROC analyses were performed. To assess the significance of changes in the areas under the ROC curves (AUC) in the illness dynamics, the ROC curves were compared in pairs (1-5, 5-7, 7-10, 10-14, 14-21 days) using the DeLong nonparametric algorithm. Results. There were significant differences between the number of leukocytes, neutrophils, lymphocytes, and the NEU/LYM ratio in patients with a favorable outcome and those that later died. The most significant outcome predictors were the number of neutrophils and, especially, the NEU/LYM index, with an increase in which, the likelihood of death sharply increased. The ROC-analysis showed that on day 1, the outcome predictive ability of AUC for the NEU/LYM ratio was 79%; by day 5, it increased to 84%; from day 10 to day 21, it exceeded 90 %. In the presence of high indicators for potentially lethal outcomes, it is necessary to administer immunomodulators. For this purpose, we recommend using a complex of polypeptides from the thymus gland, i.e., thymalin, which has proven beneficial for treatment of patients with moderate to severe COVID-19. Conclusion. The neutrophil/lymphocyte ratio predicts of the outcome of severe COVID-19 with high sensitivity and specificity.

Downloads

Download data is not yet available.

References

1. Goh KJ, Choong MC, Cheong EH, Kalimuddin S, Duu Wen S, Phua GC, Chan KS, Haja Mohideen Rapid Progression to Acute Respiratory Distress Syndrome: Review of Current Understanding of Critical Illness from COVID-19 Infection. S.Ann Acad Med Singapore. 2020; 49(3): 108-118.
2. Кузник Б.И., Хавинсон В.Х., Смирнов В.С. Особенности патогенеза и течения COVID-19 у лиц пожилого и старческого возраста. Успехи геронтологии. 2020; 33(6): 1032-1042. doi: 10.34922/AE.2020.33.6.003.
3. Masic Izet , Naser Nabil , Zildzic Muharem. Public Health Aspects of COVID-19 Infection With Focus on Cardiovascular Disea. Mater Sociomed. 2020; 32(1): 71-76. doi: 10.5455/msm. 2020.32.71-76.
4. Gao Y, Li T, Han M. et al. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. J. Med. Virol. 2020; 92(27): 791-796. doi: 10.1002/jmv.25770.
5. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. HLH Across Speciality Collaboration, UK Lancet; 395(10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
6. Rizwan K, Rasheed T, Khan SA, Bilal M, Mahmood T. Current perspective on diagnosis, epidemiological assessment, prevention strategies, and potential therapeutic interventionsfor severe acute respiratory infections caused by 2019 novel coronavirus (SARS-CoV-2).Hum Vaccin Immunother. 2020; 16(12): 3001-3010. doi: 0.1080/21645515.2020.1794684.
7. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38 (1): 1–9. doi: 10.12932/AP-200220-0772.
8. Lu C.C., Chen M.Y., Lee W.S. et al. Potential therapeutic agents against COVID-19: What we know so far. J Chin Med Assoc. 2020; 83 (6): 534–6. doi: 10.1097/JCMA.0000000000000318.
9. Kenneth E. Remy, Lyle L. Moldawer, Richard S. Hotchkiss JCI Insight. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections 2020. https://doi.org/10.1172/jci.insight.140329.
10. Pedersen SF, Ho YC. SARS-CoV-2: a storm is raging. J. Clin. Invest. 2020; 130(5): 2202-2205. doi: 10.1172/JCI137647.
11. Chen G, Wu D, Guo W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J. Clin. Invest. 2020; 130(5): 2620-2629. doi: 10.1172/JCI137244.
12. Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med. 2020. doi: 10.1001/jamainternmed.2020.0994.
13. Gutmann C, Takov K, Burnap SA, Singh B, Ali H, Theofilatos K, Reed E, Hasman M, et al. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nature Communication 2021;12: 3406 (2021). doi: 10.1038/s41467-021-23494-1.
14. Григорьев С.Г., Лобзин Ю.В., Скрипченко Н.В. Роль и место логистической регрессии и ROC- анализа в решении медицинских диагностических задач. Журнал инфектологии. 2016. 8(4). 36-45. doi: 10.22625/2072-6732-2016-8-4-36-45.
15. Hughes G., Kopetzky J., McRoberts N. Mutual Information as a Performance Measure for Binary Predictors Characterized by Both ROC Curve and PROC Curve Analysis. Entropy (Basel). 2020 Aug 26. 22(9). 938. doi: 10.3390/e22090938.
16. Saad M, Lee IH. Leveraging hybrid biomarkers in clinical endpoint prediction. BMC Med Inform Decis Mak. 2020; 20(1): 255. doi: 10.1186/s12911-020-01262-3.
17. Li M, Yang T, He R, Li A, Dang W, Liu X, Chen M. The Value of Inflammatory Biomarkers in Differentiating Asthma-COPD Overlap from COPD. Int J Chron Obstruct Pulmon Dis. 2020; 15: 3025-3037. doi: 10.2147/COPD.S273422.
18. Hughes G. Entropy (Basel). On the Binormal Predictive Receiver Operating Characteristic Curve for the Joint Assessment of Positive and Negative Predictive Values. 2020. May 26. 22(6). 593.doi: 10.3390/e22060593.
19. Brindisi G., De Vittori V., De Nola R., Di Mauro A., De Castro G., Baldassarre M. E., Cicinelli E., Cinicola B., Duse M., Zicari A. M. The Role of Nasal Nitric Oxide and Anterior Active Rhinomanometry in the Diagnosis of Allergic Rhinitis and Asthma: A Message for Pediatric Clinical Practice. J Asthma Allergy. 2021. 14. 265-274. doi: 10.2147/JAA.S275692.
20. Hosmer S., Lemeshow S.L. Applied Logistic Regression. John Wiley & Sons, 2013. 528 pp.
21. Файнзильберг Л.С., Жук Т.Н. Гарантированная оценка эффективности диагностических тестов на основе усиленного ROC-анализа. Управляющие системы и машины. 2009; (5): 3-13.
22. Кузник Б.И., Хавинсон В.Х., Линькова Н.С. COVID-19: влияние на иммунитет, систему гемостаза и возможные пути коррекции. Успехи физиологических наук. 2020; 51(4): 51-63. doi: 10.31857/S0301179820040037.

23. Khavinson V., Linkova N., Dyatlova A., Kuznik B., Umnov R. Peptides: prospects for use in the treatment of COVID-19// J Molecules. Special Issue "Peptide Therapeutics 2.0". 2020; 25(10): 4389. doi: 10.3390/molecules25194389.
24. Khavinson V.K., Kuznik B.I., Trofimova S.V., Volchkov V.A., Rukavishnikova S.A., Titova O.N., Magen, E. (2021). Results and prospects of using activator of hematopoietic stem cell differentiation in complex therapy for patients with COVID-19. Stem Cell Reviews and Reports. 2021; 17: 285-290. doi: 10.1007/s12015-020-10087-6.
25. Хавинсон В.Х., Кузник Б.И., Стуров В.Г., Гладкий П.А. Применение препарата Тималин® при заболеваниях органов дыхания. Перспективы использования при COVID-19. РМЖ. 2020;9.24-30.
26. Хавинсон В.Х., Кузник Б.И. Осложнения у больных CОVID-19. Предполагаемые механизмы коррекции. Клиническая медицина» 2020; 4: 256-265. doi: 10.30629/0023-2149-2020-98-4-256-265.
27. Лукьянов С.А., Кузник Б.И., Хавинсон В.Х. Использование Тималина для коррекции отклонений иммунного статуса при COVID-19 (клинический случай). Врач. 2020; 31 (8): 74–82. doi: 10.29296/25877305-2020-08-12.
28. Кузник Б.И., Морозов В.Г., Хавинсон В.Х. Цитомедины. СПб: Наука, 1998; 310 с.
29. Хавинсон В.Х., Кузник Б.И., Рыжак Г.А. Пептидные геропротекторы – эпигенетические регуляторы физиологических функций организма. СПб: РГПУ им. А.И. Герцена, 2014; 271 с.
30. Морозов В.Г., Хавинсон В.Х., Малинин В.В. Пептидные тимомиметики. СПб: Наука, 2000; 158 с.
31. Хавинсон В.Х. Кузник Б.И. , Волчков В.А. , Рукавишникова С.А., Титова О.Н., Ахмедов Т.А., Трофимова С.В. , Рыжак Г.А. , Потемкин В.В. Сагинбаев У. Влияние тималина на адаптивный иммунитет при проведении комплексной терапии пациентов с covid-19. Клиническая медицина. 2020;98(8) doi: 10.30629/0023-2149-2020-98-8-593-599.
32. Морозов В.Г., Хавинсон В.Х. Выделение из костного мозга, лимфоцитов и тимуса полипептидов, регулирующих процессы межклеточной кооперации в системе иммунитета. Докл АН СССР. 1981; 261 (1): 235–9 [Morozov V.G., Khavinson V.Kh. Isolation of polypeptides from the bone marrow, lymphocytes and thymus that regulate the processes of intercellular cooperation in the immune system. Docl SA USSR. 1981; 261 (1): 235–9 (in Russ.)].
33. Khavinson V., Linkova N., Dyatlova A., Kuznik B., Umnov R. Peptides: prospects for use in the treatment of COVID-19. J Molecules. Special Issue "Peptide Therapeutics 2.0". 2020; 25(10): 4389. doi: 10.3390/molecules25194389.
Published
2021-12-07
How to Cite
Kuznik B., Smolyakov Y. N., Khavinson V., Shapovalov K., Lukyanov S., Fefelova E., Kazantseva L. NEUTROPHILS, LYMPHOCYTES AND THEIR RATIO AS PREDICTORS OF OUTCOMES IN PATIENTS WITH COVID-19 // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2021. VOL. 65. № 4. PP. 34–41.
Section
Original research