Influence of afobazole on changes in the early postnatal period in BALB/c mice with fetal valproate syndrome

  • Инга Геннадиевна Капица ФГБНУ "НИИ Фармакологии имени В. В. Закусова"
  • Александр Александрович Алымов ФГБНУ "НИИ фармакологии имени В.В.Закусова"
  • S.B. Seredenin V.V. Zakusov Institute of Pharmacology, Baltiyskaya Str. 8, Moscow 125315, Russia https://orcid.org/0000-0003-4482-9331
  • T.A. Voronina V.V. Zakusov Institute of Pharmacology, Baltiyskaya Str. 8, Moscow 125315, Russia https://orcid.org/0000-0001-7065-469X
Keywords: autism spectrum disorders, ASD, fetal valproate syndrome, FVS, BALB/c mice, early postnatal phase, afobazole

Abstract

Introduction. Exposure of rodents to valproic acid during pregnancy is associated with increased incidence of autism spectrum disorders, and has been extensively used as an appropriate model of autism. Aim. To study early behavioral changes in BALB/c mice prenatally exposed to a single dose of valproic acid sodium salt (400 mg/kg) and a possibility of correcting these changes with afobazole. Methods. The study was performed on BALB/c mice with fetal valproate syndrome (FVS). The mice were daily injected orally afobazole 10 mg/kg or 0.9% sodium chloride from day 7 to day 14 of the postnatal development. The control group was injected with an equivalent volume (0.1 ml per 10 g body weight) of 0.9% sodium chloride. The condition of mice was studied from day 6 to day 14 of the postnatal development with evaluation of their physical development, maturation rate of sensory-motor reflexes, emotional-motor behavior, and precise coordination using a battery of «developmental» tests. Results. Administration of valproic acid to female mice on the 13th day of pregnancy led to delayed maturation of the offspring’s sensory-motor reflexes, impaired emotional-motor behavior and coordination of movements during the nesting period. Afobazole administered to mice with fetal valproate syndrome from day 7 to day 14 of the postnatal development at a dose of 10 mg/kg (daily, orally), corrected the disorders in the tests used for assessing retardation or disruption of nervous system development.

Downloads

Download data is not yet available.

References

1. Zwaigenbaum L., Bryson S., Rogers T., Roberts W., Brian J., Szatmari P. Behavioral manifestations of autism in the first year of life. International journal of developmental neuroscience. 2005; 23(2–3): 143–52.
2. Pyhala R, Hovi P, Lahti M, Sammallahti S, Lahti J, Heinonen K et al. Very low birth weight, infant growth, and autism-spectrum traits in adulthood. Pediatrics. 2014; 134(6): 1075–1083.
3. Chen C., Van Horn J.D. Developmental neurogenetics and multimodal neuroimaging of sex differences in autism. Brain imaging and behavior. 2017; 11: 38-61.
4. Rasalam A.D., Hailey H., Williams J.H.G., Moore S.J., Turnpenny P.D., Lloyd D.J. et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Developmental medicine and child neurology. 2005; 47(8): 551-555.
5. Paunova S.S., Donin I.M., Busova E.S., Semina I.V., Lifshits M.I., Popov V.E. et al. Valproate syndrome in a newborn. Pediatriya. 2016; 95(1): 140-142. (In Russian).
6. Kataoka S., Takuma K., Hara Y., Maeda Y., Ago Y., Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. The international journal of neuropsychopharmacology. 2013; 16(1): 91–103.
7. Roullet F.I., Wollaston L., Decatanzaro D., Foster J.A. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience. 2010; 170(2): 514–522.
8. Yang E-J., Ahn S., Lee K., Mahmood U., Kim H.S. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS One. 2016. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153298 (Accessed 08 June 2020)
9. Tartaglione A.M., Schiavi S., Calamandrei G., Trezz V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. Neuropharmacology. 2019. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0028390818309134?via%3Dihub (Accessed 08 June 2020)
10. Nicolini C., Fahnestock M. The valproic acid-induced rodent model of autism. Experimental Neurology. 2018; 299: 217–227.
11. Kazdoba T.M., Leach P.T., Yang M., Silverman J.L., Solomon M., Crawley J.N. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci. 2016; 28: 1-52.
12. Brodkin E.S. BALB/c mice: low sociability and other phenotypes that may be relevant to autism. Behav. Brain Res. 2007; 176: 53-65.
13. Moy S.S., Nadler J.J., Young N.B., Perez A., Holloway L.P., Barbaro R.P. et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res. 2007; 176(1): 4-20.
14. Kapitsa I.G., Ivanova E.A., Voronina T.A., Seredenin S.B. Autism-Relevant Behavioral Traits inInbred Strain of Balb/C Mice. Russian Journal of Physiology. 2020; 106(3); 373–83.
15. Neznamov G.G., Syunyakov S.A., Chumakov D.V., Mametova L.E. Aphobazol - new selective anxyolytic drug. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2005;105(4):35-40. (In Russian).
16. Durnev A.D., Zhanataev A.K., Shreder O.V., Seredenin S.B. Antimutagenic and antiteratogenic properties of afobazole. Eksperimental’naya i klinicheskaya farmakologiya. 2009;72(1):46–51. (In Russian).
17. Kapitsa I.G., Ivanova E.A., Voronina T.A., Kalinina A.P., Seredenin S.B. Treatment of Anxiety with Afobazole in Experimental Model of Autism. Eksperimental’naya i klinicheskaya farmakologiya. 2019;82(10):3–7. (In Russian).
18. Kapitsa I.G., Kalinina A.P., Alymov A.A., Voronina T.A., Seredenin S.B. Аfobazole facilitates cognitive rigidity in BALB/c mice with autism-relevant behavioral phenotype. Byulleten eksperimentalnoy biologii i meditsiny. 2019;168(8):191–194. (In Russian).
19. Wagner G.C., Reuhl K.R., Cheh M., McRae P., Halladay A.K. A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. Journal of autism and developmental disorders. 2006; 36(6): 779-93.
20. Hill J.M., Lim M.A., Stone M.M. Developmental Milestones in the Newborn Mouse. In: Gozes I, eds. Neuropeptide Techniques. Neuromethods №39. Totowa, New Jersey: Humana Press Inc. 2008: 131-149.
21. Kane M.J., Angoa-Perez M., Briggs D.I., Sykes C.E., Francescutti D.M., Rosenberg D.R. et al. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. PLoS One. 2012. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048975 (Accessed 08 June 2020)
22. Rodríguez-Fanjul J., Fernández-Feijóo C.D., Lopez-Abad M., Ramos M.G.L., Caballé R.B., Alcántara-Horillo S. et al. Neuroprotection With Hypothermia and Allopurinol in an Animal Model of Hypoxic-Ischemic Injury: Is It a Gender Question? PLoS One. 2017. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184643 (Accessed 08 June 2020)
23. Moy S.S., Nadler J.J., Perez A., Barbaro R.P., Johns J.M., Magnuson T.R. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes, brain, and behavior. 2004; 3(5): 287–302.
24. Healy S., Aigner C.J., Haegele J.A. Prevalence of overweight and obesity among US youth with autism spectrum disorder. Autism. 2019; 23(4): 1046-50.
25. Blanchart A., Romaguera M., García-Verdugo J.M., de Carlos J.A., López-Mascaraque L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. The European journal of neuroscience. 2008; 27(11): 2838-46.
26. Burket J.A., Young C.M., Green T.L., Benson A.D., Deutsch S.I. Characterization of gait and olfactory behaviors in the BALB/c mouse model of autism spectrum disorders. Brain research bulletin. 2016; 122: 29-34.
27. Weruaga E., Briñón J.G., Porteros A., Arévalo R., Aijón J., Alonso J.R. A sexually dimorphic group of atypical glomeruli in the mouse olfactory bulb. Chemical senses. 2001; 26(1): 7–15.
28. Segovia S., Guillamón A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. Brain research reviews. 1993; 18(1): 51–74.
29. Seredenin S.B., Voronin M.V. Neuroreceptor mechanisms involved in the action of afobazole. Eksperimental’naya i klinicheskaya farmakologiya. 2009;72(1):3-11. (In Russian).
30. Seredenin S.B., Voronin M.V., Abramova E.V.. Sigma-1 receptors: a new pharmacological target. Eksperimental’naya i klinicheskaya farmakologiya. 2017;80(9):9-19. (In Russian).
31. Abramova E.V., Voronin M.V., Seredenin S.B. Interaction of afobazole with Sigma-1 receptors in mice brain. Khimiko-farmatsevticheskiy zhurnal. 2015;49(1):9-11. (In Russian).
32. Hayashi T. The Sigma-1 receptor in cellular stress signaling. Frontiers in neuroscience. 2019. Available at: https://www.frontiersin.org/articles/10.3389/fnins.2019.00733/full (Accessed 08 June 2020).
Published
2021-03-13
How to Cite
Капица И. Г., Алымов . А. А., Seredenin S., Voronina T. Influence of afobazole on changes in the early postnatal period in BALB/c mice with fetal valproate syndrome // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2021. VOL. 65. № 1. PP. 12–21.
Section
Original research