Detection of oxidative stress induced by calcium phosphate bions in human arterial endothelial cells

  • A.G. Kutikhin Research Institute for Complex Issues of Cardiovascular Diseases, Sosnoviy Blvd. 6, Kemerovo 650002, Russian Federation https://orcid.org/0000-0001-8679-4857
  • D.K. Shishkova Research Institute for Complex Issues of Cardiovascular Diseases, Sosnoviy Blvd. 6, Kemerovo 650002, Russian Federation https://orcid.org/0000-0002-1518-3888
  • R.A. Mukhamadiyarov Research Institute for Complex Issues of Cardiovascular Diseases, Sosnoviy Blvd. 6, Kemerovo 650002, Russian Federation https://orcid.org/0000-0002-5558-3229
  • E.A. Velikanova Research Institute for Complex Issues of Cardiovascular Diseases, Sosnoviy Blvd. 6, Kemerovo 650002, Russian Federation
Keywords: atherosclerosis, bions, hydroxyapatite, endothelial cells, reactive oxygen species, superoxide, superoxidefree radicals, superoxide dismutase

Abstract

Background. Calcium phosphate bions (CPB) form in the human blood upon its supersaturation with calcium and phosphate and provoke endothelial dysfunction; however, the molecular mechanisms of these pathological processes remain unclear. Aim. To elucidate the role of differently shaped CPBs in induction of oxidative stress in human arterial endothelial cells (Ecs). Methods. For detection of oxidative stress, equal concentrations of spherical CPB (CPB-S) or needle-shaped CPB (CPB-N) were added to confluent cultures of primary human coronary artery and internal thoracic artery ECs for 1 and 4 h; this was followed by MitoSOX Red and CellROX Green staining and subsequent confocal microscopy. Concentration of thiobarbituric acid-reactive substances was measured in the EC culture supernatant at 24 h of the CPB exposure. The lipid peroxidation cytotoxicity was neutralized by adding superoxide dismutase and catalase to ECs for 4 or 24 h. To compare cell death subroutines induced by CPB-S and CPB-N, the effect of bafilomycin A1, a lysosomal inhibitor, on CRB cytotoxicity was studied. Results. No increase in reactive oxygen species generation was observed in the CPB-S exposure, regardless of the EC line and exposure duration. However, addition of CPB-N to ECs increased the production of superoxide and other free radicals after fourand one-hour exposure, respectively. Prior neutralization of reactive oxygen species with superoxide dismutase and catalase partially protected ECs from CPB-N- but not CPB-S-induced death while bafilomycin A1, vice versa, protected ECs from CPB-S- but not CPB-N-induced death. Conclusion. CPB-S cause cell death due to primary damage of lysosomes whereas CPB-N induce apoptosis due to oxidative stress.

Downloads

Download data is not yet available.

References

1. Lind L., Skarfors E., Berglund L., Lithell H., Ljunghall S. Serum calcium: a new, independent, prospective risk factor for myocardial infarction in middle-aged men followed for 18 years. J Clin Epidemiol. 1997; 8: 967-73. doi: 10.1016/S0895-4356(97)00104-2.
2. Foley RN, Collins AJ, Ishani A, Kalra PA. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J. 2008; 156(3): 556-63. doi: 10.1016/j.ahj.2008.05.016.
3. Larsson TE, Olauson H, Hagström E, Ingelsson E, Arnlöv J, Lind L, Sundström J. Conjoint effects of serum calcium and phosphate on risk of total, cardiovascular, and noncardiovascular mortality in the community. Arterioscler Thromb Vasc Biol. 2010; 30(2): 333-9. doi: 10.1161/ATVBAHA.109.196675.
4. Weiner DE, Tighiouart H, Amin MG, Stark PC, MacLeod B, Griffith JL, Salem DN, Levey AS, Sarnak MJ. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol. 2004; 15(5): 1307-15. doi: 10.1097/01.ASN.0000123691.46138.E2.
5. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004; 351(13): 1296-305. doi: 10.1056/NEJMoa041031.
6. Wu CY, Young L, Young D, Martel J, Young JD. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids. PLoS One. 2013; 8(9): e75501. doi: 10.1371/journal.pone.0075501.
7. Kutikhin AG, Velikanova EA, Mukhamadiyarov RA, Glushkova TV, Borisov VV, Matveeva VG, Antonova LV, Filip'ev DE, Golovkin AS, Shishkova DK, Burago AY, Frolov AV, Dolgov VY, Efimova OS, Popova AN, Malysheva VY, Vladimirov AA, Sozinov SA, Ismagilov ZR, Russakov DM, Lomzov AA, Pyshnyi DV, Gutakovsky AK, Zhivodkov YA, Demidov EA, Peltek SE, Dolganyuk VF, Babich OO, Grigoriev EV, Brusina EB, Barbarash OL, Yuzhalin AE. Apoptosis-mediated endothelial toxicity but not direct calcification or functional changes in anti-calcification proteins defines pathogenic effects of calcium phosphate bions. Sci Rep. 2016; 6: 27255. doi: 10.1038/srep27255.
8. Shishkova D.K., Mukhamadiyarov R.A., Velikanova E.A., Kudryavsteva Yu.A., Kutikhin A.G. Internalisation of calcium phosphate and magnesium phosphate bions by endothelial cells utilising scanning electron microscopy and confocal microscopy. Atherosclerosis. 2019; 2(15): 8-16. doi: 10.15372/ATER20190202. (in Russian).
9. Shishkova D.K., Velikanova E.A., Sinitsky M. Y., Kutikhin A.G. Calcium phosphate bions induce secretion of pro-inflammatory cytokines interleukin 6 and interleukin 8 by arterial endothelial cells in vitro. Cytokines and Inflammation. 2018; 1-4(17): 80-85. (in Russian).
10. Shishkova D.K., Velikanova E.A., Matveeva V.G., Kudryavtseva Yu.A., Kutikhin A.G. Specific toxicity of calcium phosphate bions for human venous and arterial endothelial cells. Pathological physiology and experimental therapy. 2019; 1(63): 53-61 doi: 10.25557/0031-2991.2019.01.53-61. (in Russian).
11. Shishkova D.K. Velikanova E.A. Krivkina E.O. Mironov A.V. Kudryavtseva Yu. A. Kutikhin A.G. Calcium-phosphate bions do specifically induce hypertrophy of damaged intima in rats. Russian Journal of Cardiology. 2018; 9(23): 33-38. doi: 10.15829/1560-4071-2018-9-33-38. (in Russian).
12. Shishkova D.K., Velikanova E.A., Krivkina E.O., Mironov A.V., Kudryavtseva Yu. A., Kutikhin A.G. Toxicity of calcium phosphate bions for aortic adventitia in rats. Atherosclerosis and Dyslipidemia. 2018; (3): 37–43. (in Russian).
13. Shishkova D.K., Glushkova T.V, Efimova O.S., Popova A.N., Malysheva V.Y., Kolmykov R.P., Ismagilov Z.R., Gutakovsky A.K., Zhivodkov Y.A., Kozhukhov A.S., Sevostyanov O.G, Dolganyuk V.F., Kudryavtseva Y.A., Kutikhin A.G. Morphological and chemical characterization of magnesium phosphate and calcium phosphate bions. Fundamental and clinical medicine. 2019; 2(4): 6-16. doi: 10.20333/2500136-2019-3-34-42. (in Russian).
14. Shishkova D.K., Glushkova T.V., Efimova O.S., Popova A.N., Malysheva V.Yu., Kolmykov R.P., Ismagilov Z.R., Gutakovsky A.K., Zhivodkov Yu.A., Kozhukhov A.S., Dolganyuk V.F., Barbarash O.L., Kutikhin A.G. Morphological and chemical properties of spherical and needle calcium phosphate bions. Complex problems of cardiovascular disease. 2019; 1(8): 59-69. doi: 10.17802/2306-1278-2019-8-1-59-69. (in Russian).
15. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018;25(3):486-541. doi: 10.1038/s41418-017-0012-4.
16. Dupre-Crochet S, Erard M, Nusse O. ROS production in phagocytes: why, when, and where? J Leukoc Biol. 2013; 94(4): 657-70. doi: 10.1189/jlb.1012544.
17. Brown GC, Borutaite V. There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion. 2012; 12(1): 1-4. doi: 10.1016/j.mito.2011.02.001.
18. Peng HH, Wu CY, Young D, Martel J, Young A, Ojcius DM, Lee YH, Young JD. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids. Small. 2013; 9(13): 2297-307. doi: 10.1002/smll.201202270.
19. Smith ER, Hanssen E, McMahon LP, Holt SG. Fetuin-A-containing calciprotein particles reduce mineral stress in the macrophage. PLoS One. 2013; 8(4): e60904. doi: 10.1371/journal.pone.0060904.
20. Koppert S, Büscher A, Babler A, Ghallab A, Buhl EM, Latz E, Hengstler JG, Smith ER, Jahnen-Dechent W. Cellular Clearance and Biological Activity of Calciprotein Particles Depend on Their Maturation State and Crystallinity. Front Immunol. 2018; 9: 1991. doi: 10.3389/fimmu.2018.01991.
21. Xu Z, Liu C, Wei J, Sun J. Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts. J Appl Toxicol. 2012; 32(6): 429-35. doi: 10.1002/jat.1745.
22. Pujari-Palmer S, Chen S, Rubino S, Weng H, Xia W, Engqvist H, Tang L, Ott MK. In vivo and in vitro evaluation of hydroxyapatite nanoparticle morphology on the acute inflammatory response. Biomaterials. 2016; 90: 1-11. doi: 10.1016/j.biomaterials.2016.02.039.
23. Zhang CY, Sun XY, Ouyang JM, Gui BS. Diethyl citrate and sodium citrate reduce the cytotoxic effects of nanosized hydroxyapatite crystals on mouse vascular smooth muscle cells. Int J Nanomedicine. 2017; 12: 8511-8525. doi: 10.2147/IJN.S145386.
24. Rao CY, Sun XY, Ouyang JM. Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells. Mater Sci Eng C Mater Biol Appl. 2019; 103: 109807. doi: 10.1016/j.msec.2019.109807.
Published
2021-03-14
How to Cite
Kutikhin A., Shishkova D., Mukhamadiyarov R., Velikanova E. Detection of oxidative stress induced by calcium phosphate bions in human arterial endothelial cells // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2021. VOL. 65. № 1. PP. 70–78.
Section
Original research