Photoactivation of cytochrome с oxidase activity in liver mitochondria of Japanese quail by therapeutic doses of blue and red LED irradiation
Abstract
The aim was to study the effect of blue (450 nm) and red (630 nm) LED irradiation with different energy exposures on activity of mitochondrial cytochrome c oxidase. Methods. The study was performed on mitochondria isolated from the liver of Japanese quail Coturnix japonica. Cytochrome c oxidase activity was measured by the rate of oxidation of reduced tetramethyl-p-phenylenediamine in the presence of rotenone. Results. Irradiation of mitochondria with blue light at doses not exceeding 4 J/cm² caused approximately 5—15% stimulation of cytochrome c oxidase activity while doses higher than 5 J/cm² led to inhibition of this enzyme. Irradiation of mitochondria with red light also exerted a slight stimulating effect (10—20%) on cytochrome c oxidase activity compared to unirradiated samples. Conclusion. The study suggested that low-dose irradiation with blue light may produce a therapeutic effect similar to red light in photobiomodulation.
Downloads
References
2. Tang J., Du Y., Lee C.A., Talahalli R., Eells J.T., Kern T.S. Low-intensity far-red light inhibits early lesions that contribute to diabetic retinopathy: in vivo and in vitro. Invest. Ophthalmol. Vis. Sci. 2013; 54: 3681-90.
3. Geneva I.I. Photobiomodulation for the treatment of retinal diseases: a review. Int. J. Ophthalmol. 2016; 9(1): 145-52.
4. Albarracin R., Eells J., Valter K. Photobiomodulation protects the retina from light-induced photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 2011; 52(6): 3582-92.
5. Qu C., Cao W., Fan Y., Lin Y. Near-infrared light protect the photoreceptor from light-induced damage in rats. Adv. Exp. Med. Biol. 2010; 664: 365-74.
6. Begum R., Powner M.B., Hudson N., Hogg C., Jeffery G. Treatment with 670 nm light up regulates cytochrome C oxidase expression and reduces inflammation in an age-related macular degeneration model. PloS ONE. 2013; 8(2): e57828.
7. Kirk D.K., Gopalakrishnan S., Schmitt H., Abroe B., Stoehr M., Dubis A., et al. Photobiomodulation reduces photoreceptor death and regulates cytoprotection in early states of P23H retinal dystrophy. Mechanisms for low-light therapy. SPIE BIOS. 2013; 8569: 1-9.
8. Ivandic B.T., Ivandic T. Low-level laser therapy improves vision in patients with age-related macular degeneration. Photomedicine and Laser Surgery. 2008; 26: 241-5.
9. Merry G.F. Munk M.R., Dotson R.S., Walker M.G., Devenyi R.G. Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration. Acta Ophthalmol. 2017; 95(4): e270-7.
10. Tang J., Herda A.A., Kern T.S. Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. British Journal of Ophthalmology. 2014; 98(8): 1013-5.
11. Ivandic B.T., Ivandic T. Low-level laser therapy improves visual acuity in adolescent and adult patients with amblyopia. Photomedicine and Laser Surgery. 2012; 30: 167-71.
12. Ivandic B.T., Ivandic T. Low-level laser therapy improves vision in a patient with retinitis pigmentosa. Photomedicine and Laser Surgery. 2014; 32: 181-4. ISSN 0031-2991
13. Wu J., Seregard S., Algvere P.V. Photochemical damage of the retina. Surv. Ophthalmol. 2006; 51: 461-81.
14. Dontsov A.E., Zak P.P., Sereznikova N.B., Pogodina L.S., Gurieva T.S., Dadasheva O.A. Activation effect of low-dose blue irradiation on intracellular metabolism of retinal pigment epithelium of Japanese quail Coturnix japonica. In: Proceedings of the II Russian Congress with international participation «Proliferative syndrome in biology and medicine». [Аktivatsionnoe deystvie nizkodozovogo sinego oblucheniya na vnutrikletochnyy metabolizm retinal’nogo pigmentnogo epiteliya yaponskogo perepela Coturnix yaponica. V kn.: Materialy II Rossiyskogo kongressa s mezhdunarodnym uchastiem «Proliferativnyy sindrom v biologii i meditsine»]. Moskva; 2016: 78-82. Moscow; 2016: 78-82. (in Russian)
15. Dontsov A.E., Vorobjev I.A., Zolnikova I.V., Pogodina L.S., Potashnikova D.M., Sereznikova N.B., Zak P.P. Photobiomodulating effect of low-dose LED blue range (450 nm) radiation on mitochondrial activity. Sensornye Systemy. 2017; 31(4): 311-20. (in Russian)
16. Karu T.I. Universal cellular mechanism of laser biostimulation: photo-activation of the respiratory chain enzyme cytochrome C-oxidase. In: Modern laser-information and laser technologies. Proceedings of the IPLIT RAN. Moscow; 2005: 131-43. (in Russian)
17. Hamblin M.R. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem. Photobiol. 2018; 94: 199-212.
18. Karu T. Primary and secondary mechanisms of action of visible to near-Ir radiation on cells. J. Photochem. Photobiol. B: Biol. 1999; 49(1): 1-17.
19. Karu T.I., Pyatibrat L.V., Kolyakov S.F., Afanasyeva N.I. Absorption measurements of a cell monolayer relevant to phototherapy: reduction of cytochrome c oxidase under near IR radiation. J. Photochem. Photobiol. B: Biol. 2005; 81: 98-106.
20. Beirne K., Rozanowska M., Votruba M. Photostimulation of mitochondria as a treatment for retinal neurodegeneration. Mitochondrion. 2017; 36: 85-95.
21. Pastore D., Greco M., Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. International Journal of Radiation Biology. 2000; 76(6): 863-70.
22. Eells J.T., Henry M.M., Summerfelt P., Wong-Riley M.T., Buchmann E.V., Kane M., Whelan N.T., Whelan H.T. Therapeutic photobiomodulation for methanol-induced retinal toxicity. PNAS. 2003; 100(6): 3439-44.
23. Sarti P., Forte E., Mastronicola D., Giuffrе A., Arese M. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. Biochim. Biophys. Acta. 2012; 1817: 610-19.
24. Lane N. Cell Biology: Power games. Nature. 2006; 443: 901-3.
25. Buravlev E.A., Zhidkova T.V., Osipov A.N., Vladimirov Y.A. Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Laser Med. Sci. 2015; 30: 173-80.
26. Adar F., Yonetani T. Resonance Raman spectra of cytochrome oxidase. Evidence for photoreduction by laser photons in resonance with the Soret band. Biochim. Biophys. Acta. 1978; 502: 80-6.
27. Adar F., Erecinska M. Photoreduction titration of the resonance Raman spectra of cytochrome oxidase in whole mitochondria. Biochemistry. 1979; 18: 1825-9.
28. Ninnemann H., Butler W.L., Epel B.L. Inhibition of respiration and destruction of cytochrome A3 by light in mitochondria and cytochrome oxidase from beef heart. Biochim. Biophys. Acta. 1970; 205(3): 507-12.
29. Salet C., Passarella S., Quagliariello E. Effect of selective irradiation on mammalian mitochondria. Photochem. Photobiol. 1987; 45(3): 433-8.
30. Mosolov I.M., Gorsky A.I., Scholz J.F. Isolation of intact mitochondria from rat liver. Methods of modern biochemistry. Мoscow; Science; 1975: 45-7. (in Russian)
31. Papa S., Guerrieri F., Izzo G., Boffoli D. Mechanism of proton translocation associated to oxidation of N-tetramethyl-p-phenylenediamine in rat liver mitochondria. FEBS Let. 1983; 157(1): 15-20.