A translational model of chronic heart failure in rats
Abstract
Aim. Development of a translational model for chronic heart failure (CHF) in rats to identify new biotargets for finding and studying mechanisms of innovative drug effect in this disease. Methods. A set of echocardiographic, morphological, biochemical, and molecular methods was used to evaluate and differentiate stages of CHF development. Results. Dynamic echocardiographic studies showed that CHF developed in 90 days after anterior transmural myocardial infarction. By that time, left ventricular ejection fraction was significantly decreased in animals of the main group compared with rats studied on day 2 after experimental myocardial infarction (55.9±1.4% vs. 63.9±1.6%, respectively, p<0.0008). The decrease in heart’s pumping function (by 13% compared with day 2 after infarction and by approximately 40% compared to intact animals) was associated with increased ESD and EDD (from 2.49 ± 0.08 to 3.91 ± 0.17 mm, p = 0.0002, and from 3.56 ± 0.11 to 5.20 ± 0.19 mm, respectively, p=0.0001); therefore, dilated heart failure developed by that time. The results of echocardiographic studies were confirmed by myocardial morphometry, which demonstrated dilatation of both right and left ventricles. Paralleled histological studies indicated presence of the changes pathognomonic for this myocardial pathology (postinfarction cardiosclerosis, compensatory hypertrophy of cardiomyocytes, foci of disappeared transverse striation of muscle fibers, etc.) and signs of venous congestion in lungs and liver. Biochemical studies demonstrated a significant increase in plasma concentration of brain natriuretic peptide, a biochemical marker of CHF. Results of molecular studies suggested hyperactivity of the renin-angiotensin-aldosterone and sympathoadrenal systems, which play a key role in the pathogenesis of CHF. Conclusions. A translational model of CHF in rats was developed, which reproduced major clinical and diagnostic criteria for this disease. Morphometric, histological, biochemical, and molecular markers for progressive CHF were correlated with echocardiographic diagnostic signs, which allows using this echocardiographic, noninvasive method characterizing the intracardiac hemodynamics as a major criterion for the presence / absence of this pathology.
Downloads
References
2. Levy D., Kenchaiah S., Larson M.G., Benjamin E.J., Kupka M.J., Ho K.K., Murabito J.M., Vasan R.S. Long-term trends in the incidence of and survival with heart failure. N. Engl. J. Med. 2002; 347(18): 1397-402.
3. Fomin I.V. Chronic heart failure in the Russian Federation: what we know today and what should be done. Rossijskij kardiologicheskij zhurnal. 2016; 8 (136): 7–13.
4. Ferrero P., Iacovoni A., D'Elia E., Vaduganathan M., Gavazzi A., Senni M. Prognostic scores in heart failure – Critical appraisal and practical use. Int. J. Cardiol. 2015; 188: 1-9.
5. Sánchez-Enrique C., Jorde U.P., González-Costello J. Heart transplant and mechanical circulatory support in patients with advanced heart failure. Rev. Esp. Cardiol. (Engl Ed). 2017; 70(5): 371-81.
6. Ono T., Kamimura N., Matsuhashi T., Nagai T., Nishiyama T., Endo J. et al. The histone 3 lysine 9 methyltransferase inhibitor chaetocin improves prognosis in a rat model of high salt diet-induced heart failure. Sci. Rep. 2017; 7: 39752.
7. Liu B., Ma S., Wang T., Zhao C., Li Y., Yin J. et al. A novel rat model of heart failure induced by high methionine diet showing evidence of association between hyperhomocysteinemia and activation of NF-kappaB. Am. J. Transl. Res. 2016; 8(1): 117-24.
8. Cappetta D., Esposito G., Coppini R., Piegari E., Russo R., Ciuffreda L.P. et al. Effects of ranolazine in a model of doxorubicin-induced left ventricle diastolic dysfunction. Br. J. Pharmacol. 2017; 174(21): 3696-712.
9. Chen T., Hu Y.Q., Deng L.R., Gong Z.P., Yu X.Q. Effects of polysaccharides extracted from Zhu Zi Shen (rhizoma panacis majoris) on oxidative stress and hemodynamics in rats with adriamycin-induced chronic heart failure. J. Tradit. Chin. Med. 2011; 31(3): 235-40.
10. Pasini E., Cargnioni A., Pastore F., Razzetti R., Bongrani S., Gitti G.L., Ferrari R. Effect of nolomirole on monocrotaline-induced heart failure. Pharmacol. Res. 2004; 49(1): 1-5.
11. Zhou R., Ma P., Xiong A., Xu Y., Wang Y., Xu Q. Protective effects of low-dose rosuvastatin on isoproterenol-induced chronic heart failure in rats by regulation of DDAH-ADMA-NO pathway. Cardiovasc. Ther. 2017; 35(2): e12241.
12. Zhang X., Cheng H.J., Zhou P., Kitzman D.W., Ferrario C.M., Li W.M., Cheng C.P. Cellular basis of angiotensin-(1-7)-induced augmentation of left ventricular functional performance in heart failure. Int. J Cardiol. 2017; 236: 405-12.
13. Ku H.C., Lee S.Y., Wu Y.A., Yang K.C., Su M.J. A model of cardiac remodeling through constriction of the abdominal aorta in rats. J. Vis. Exp. 2016; (118): e54818.
14. Camacho P., Fan H., Liu Z., He J.Q. Small mammalian animal models of heart disease. Am. J Cardiovasc. Dis. 2016; 6(3): 70-80.
15. Belkina L.M., Usacheva M.A., Smirnova E.A., Popkova E.V., Saltykova V.A. Particularities of the postinfarction heart failure development in animal with different pattern of autonomic regulation. Patogenez. 2008; 6(1): 57-63.
16. Kim H.S., No C.W., Goo S.H., Cha T.J. An Angiotensin receptor blocker prevents arrhythmogenic left atrial remodeling in a rat post myocardial infarction induced heart failure model. J. Korean Med. Sci. 2013; 28(5): 700-8.
17. Lassen T.R., Nielsen J.M., Johnsen J., Ringgaard S., Bøtker H.E., Kristiansen S.B. Effect of paroxetine on left ventricular remodeling in an in vivo rat model of myocardial infarction. Basic Res. Cardiol. 2017; 112(3): 26.
18. McMurray J.J., Adamopoulos S., Anker S.D., Auricchio A., Bohm M. et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 2012; 14 (80): P. 803-69.
19. Kazachenko А.А., Okovityj S.V., Kulikov А.N., Ivkin D.Yu., Shustov E.B. Experimental modeling of chronic heart failure. Biomeditsina. 2013; (3): 41-8.
20. Halapas A., Papalois A., Stauropoulou A., Philippou A., Pissimissis N., Chatzigeorgiou A., Kamper E., Koutsilieris M. In vivo models for heart failure research. In Vivo. 2008; 22(6): 767-80.
21. Goldman S., Raya T.E. Rat infarct model of myocardial infarction and heart failure. J. Card. Fail. 1995; 1(2): 169-77.
22. Selye A. I., Bajuaz E., Crasso S., Nendell P. Simple technic for surgical occlusion of coronary vessels in the rat. Angiology. 1960; 11: 398-407.
23. Mareev V.Yu., Аgeev F.T., Аrutyunov G.P., Koroteev А.V., Mareev Yu.V., Ovchinnikov А.G. i dr. National recommendations of SCDS, RCS and RSMS on diagnosis and treatment of CHF (fourth revision). Serdechnaya nedostatochnost'. 2013; 14(7): 379-472.
24. Antoine S., Vaidya G., Imam H., Villarreal D. Pathophysiologic mechanisms in heart failure: role of the sympathetic nervous system. Am. J Med. Sci. 2017; 353(1): 27-30.
25. Tannenbaum S., Sayer G.T. Advances in the pathophysiology and treatment of heart failure with preserved ejection fraction. Curr. Opin. Cardiol. 2015; 30(3): 250-8.
26. De Smet H.R., Menadue M.F., Oliver J.R., Phillips P.A. Endothelin ETA receptor antagonism does not attenuate angiotensin II-induced cardiac hypertrophy in vivo in rats. Clin. Exp. Pharmacol. Physiol. 2003; 30(4): 278-83.
27. Dasgupta, Zhang, 2011 Dasgupta C, Zhang L. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug. Discov. Today. 2011; 16: 22–34.
28. Nio Y., Matsubara H., Murasawa S., Kanasaki M, Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin. Invest. 1995; 95(1): 46-54.
29. Grothusen A., Divchev D., Luchtefeld M, Schieffer B. Angiotensin II type 1 receptor blockade: high hopes sent back to reality? Minerva Cardioangiol. 2009; 57(6): 773-85.
30. Schultz Jel.J., Witt S.A., Glascock B.J., Nieman M.L., Reiser P.J., Nix S.L., Kimball T.R., Doetschman T. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II. J Clin. Invest. 2002; 109(6): 787-96.
31. Leask A. Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res. 2010; 106(11): 1675-80.
32. Huang C.Y., Chen J.Y., Kuo C.H., Pai P.Y., Ho T.J., Chen T.S., Tsai F.J., Padma V.V., Kuo W.W., Huang C.Y. Mitochondrial ROS-induced ERK1/2 activation and HSF2-mediated AT1 R upregulation are required for doxorubicin-induced cardiotoxicity. J Cell. Physiol. 2017; 233(1): 463-75.
33. Аvdonin P.V., Kozhevnikova L.M. The regulation of the expression and functional activity of G-protein coupled receptors. Violation of these processes in pathologies. Biologicheskie membrany:Zhurnal membrannoy i kletochnoy biologii. 2007: 24(1): 4-31. (in Russian)
34. Morisco C., Zebrowski D.C., Vatner D.E., Vatner S.F., Sadoshima J. Beta-adrenergic cardiac hypertrophy is mediated primarily by the beta(1)-subtype in the rat heart. J Mol. Cell. Cardiol. 2001; 33(3): 561-73.
35. Bisognano J.D., Weinberger H.D., Bohlmeyer T.J., Pende A., Raynolds M.V., Sastravaha A., Roden R., Asano K., Blaxall B.C., Wu S.C., Communal C., Singh K., Colucci W., Bristow M.R., Port D.J. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J. Mol. Cell. Cardiol. 2000; 32(5): 817-30.
36. Dorn G.W. 2nd, Tepe N.M., Lorenz J.N., Koch W.J., Liggett SB. Low- and high-level transgenic expression of beta2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaq-overexpressing mice. Proc. Natl. Acad. Sci. USA. 1999; 96(11): 6400-5.
37. Xiao R.P., Zhang S.J., Chakir K., Avdonin P., Zhu W., Bond R.A., Balke C.W., Lakatta E.G., Cheng H. Enhanced G(i) signaling selectively negates beta2-adrenergic receptor (AR)--but not beta1-AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation. 2003; 108(13): 1633-9.
38. Gong H., San Y., Wang L., Lv Q., Chen L. The effects and possible mechanism of β2AR gene expression in cardiocytes of canines with heart failure. Exp. Ther. Med. 2017; 14(1): 539-46.