Changes in corticosterone levels and enzyme activities of thyroid hormone liberin metabolism in rats during cold swimming stress

  • Nikolay Nikolaevich Zolotov Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., Moscow, 125315, Russian Federation https://orcid.org/0000-0003-3528-4659
  • Ekaterina Sergeevna Shchipkova Research Institute of General Pathology and Pathophysiology, 8 Baltiyskaya St., Moscow, 125315, Russian Federation https://orcid.org/0009-0004-6238-9100
  • Elena Valeryevna Alekseeva Institute of General Pathology and Pathophysiology, 8 Baltiyskaya str., Moscow, 125315, Russian Federation
  • Alexander Gennadievich Filippov ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии», 125315, Москва, ул. Балтийская; д. 8 https://orcid.org/0009-0003-1420-6579
  • Sergey Georgievich Morozov ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии», 125315, Москва, ул. Балтийская; д. 8 https://orcid.org/0000-0001-5822-5729
Keywords: stress, cold, thyreoliberin, peptidases, corticosterone

Abstract

Cold, being one of the most powerful stressors, activates the sympathoadrenal system, increasing the release of the pituitary thyroid-stimulating hormone, the level of which is regulated by its hypothalamic releasing factor (TRH). Glucocorticoids affect the brain content of TRH, the level of which in the hypothalamus changes after a short-term exposure to cold, and then returns to its original values, indicating the activation in the cells of the adrenal cortex of the transcription of neurohormones involved in the regulation of the thyroid axis. At the same time, changes in the activity of enzymes of its metabolism are possible. In modern conditions, a person is exposed to various stressful situations, leading to changes in the level of a number of hormones, including glucocorticoids, catecholamines, growth hormone, prolactin. Under stress, there are changes in the hypothalamic-pituitary-adrenocortical and other neuroendocrine systems, often leading to endocrine disorders. Central role in the formation and implementation of stress

Downloads

Download data is not yet available.

References

1. Makarov G.I., Zolotov N.N., Pozdnev V.F.Inhibition of Dipeptidylpeptidase-IV by (2S)-Cyanopyrrolidine Inhibitors of Prolyl Endopeptidase. Russian Journal of Bioorganic Chemistry.2024; 50(6). 2366-2378. https://doi.org/ 10.1134/s1068162024060281
2. Nordström C G, Peltola O. Determination of 11-hydroxycorticosteroids in plasma. Scand J Rheumatol.1974; 3(3), 143-144. https://doi.org/10.3109/03009747409097140
3. Ranabir S., Reetu K. Stress and hormones. Indian Journal of Endocrinology and Metabolism. 2011; 15 (1); 18-22. https:// doi.org/10.4103/2230-8210.77573
4. Гусакова Е.А., Городецкая И.В. Значение глюкокортикоидов в организации стресс-реакции организма. Вестник ВГМУ. 2020; 19 (1); 24-35. https://doi.org/10.22263/2312-4156.2020.1.24
5. Rauhala P., Männistö P T.,∙Tuominen R K. Effect of chronic morphine treatment on thyrotropin and prolactin levels and acute hormone responses in the rat. The Journal of Pharmacology and Experimental Therapeutics. 1988; 246 (2) 649-654. https://doi.org/10.1111/J.1600-0773.1996.TB00193.X
6. Idänpään-Heikkilä J.J., Rauhala P., Tuominen R.K.,Tuomainen P, Zolotov N., Männistö P.T. Morphine withdrawal alters anterior pituitary hormone secretion, brain endopeptidase activity and brain monoamine metabolism in the rat. Pharmacol Toxicol 1996; 78(3):129-135. https://doi.org/10.1111/j.1600-0773.1996.tb00193.x.
7. Fröhlich E.; Wahl. The forgotten effects of thyrotropin-releasing hormone: metabolic functions and medical applications. Frontiers in Neuroendocrinology, 2018; 52(1), 19-23. https://doi.org/10.1016/j.yfrne.2018.06.006
8. Rage F, Lazaro J B, Benyassi A, Arancibia S, Tapia-Arancibia L. Rapid changes in somatostatin and TRH mRNA in whole rat hypothalamus in response to acute cold exposure. J Neuroendocrinol. 1994; 6(1):19-23. https://doi.org/10.1111/j.1365-2826.1994.tb00550.x
9. Кубасов Р.В. Гормональные изменения в ответ на экстремальные факторы внешней среды. Вестник Российской академии медицинских наук. 2014; 69(9-10).102-109. https://doi.org/10.15690/vramn.v69i9-10.1138
10. Sánchez E, Uribe R M, Corkidi G, Zoeller R T, Cisneros M, Zacarias M, Morales-Chapa C, Charli J L, Joseph-Bravo P. Differential responses of thyrotropin-releasing hormone (TRH) neurons to cold exposure or suckling indicate functional heterogeneity of the TRH system in the paraventricular nucleus of the rat hypothalamus. Neuroendocrinology. 2001; 74(6):407-22. https://doi.org/10.1159/000054707
11. Bellemère G., Vaudry, H., Morain P; Jégou S. Effect of Prolyl Endopeptidase Inhibition on Arginine-Vasopressin and Thyrotrophin-Releasing Hormone Catabolism in the Rat Brain Journal of Neuroendocrinology.2005; 17(5) 306-313(8). https://doi.org/ 10.1111/j.1365-2826. 2005.01308.x
12. Joseph-Bravo P, Uribe R M, Vargas M A, Pérez-Martínez L, Zoeller T, Charli J L. Multifactorial modulation of TRH metabolism. Cell Mol Neurobiol. 1998; 2: 231-47: https://doi.org/10.1023/a:1022521020840
13. Khlebnikova N.N.; Krupina N.A. I. N. Orlova I.N. Bogdanova N.G., Zolotov N.N., Kryzhanovskii G.N. Effect of a Prolyl Endopeptidase Inhibitor Benzyloxycarbonyl-Alanyl-Proline on the Development of Experimental Depressive Syndrome in Rats. Bulletin of Experimental Biology and Medicine., 2009; 147(3), 291–295. https://doi.org/10.1007/s10517-009-0494-2
14. Yakovleva A.A., Micheeva I.G., Zolotov N.N., Kolyasnikova K.N., Sokolov O.Y., Kost N.V. Dipeptidylpeptidase 4 (DPP4, CD26) activity in the blood serum of term and preterm neonates with cerebral ischemia Neuropeptide., 2015; 52, 113-117. https://doi.org/10.1016/j.npep.2015.05.001
15. Bellemère G., Vaudry, H., Morain P; Jégou S. Effect of Prolyl Endopeptidase Inhibition on Arginine-Vasopressin and Thyrotrophin-Releasing Hormone Catabolism in the Rat Brain Journal of Neuroendocrinology.2005; 17(5) 306-313(8). https://doi.org/ 10.1111/j.1365-2826. 2005.01308.x
16. Salers P., Ouafik L., Giraud P., Maltese J., Dutour A., Oliver C. Ontogeny of prolyl endopeptidase, pyroglutamyl peptidase I, TRH, and its metabolites in rat pancreas. Am. J. Physiol. 1992; 262. 845-850. https://doi.org/10.1152/ajpendo.1992.262.6.E845
17. Toide K., Okamiya K., Iwamoto Y., Kato T. Effect of a Novel Prolyl Endopeptidase Inhibitor, JTP-4819, on Prolyl Endopeptidase Activity and Substance P and Arginine-Vasopressin-Like Immunoreactivity in the Brains of Aged Rats. J. Neurochem.1995; 65. 234-240 https://doi.org/10.1046/j.1471-4159.1995.65010234.x
18. Castillo-Campos A , Gutiérrez-Mata A., Charli J.L., Joseph-Bravo P. Chronic stress inhibits hypothalamus-pituitary-thyroid axis and brown adipose tissue responses to acute cold exposure in male rats. J Endocrinol Invest. 2021; 44(4). 713-723. https://doi.org/ 10.1007/s40618-020-01328-z.
19. Parra-Montes de Oca M.A., Sotelo-Rivera I., Gutiérrez-Mata A., Charli J.L., Joseph-Bravo P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front Endocrinol (Lausanne). 2021; 12. https://doi.org/10.1007/s40618-020-01328-z
20. Yu Li S., Zhang Z., Yang L., Lian X., Xie Y., Li S., Xin S., Cao P., Lu J. The MERS-CoV receptor DPP4 as a candidate binding target of the SARS-CoV-2 spike. iScience.,2020; 23(6), 222-231. https://doi.org/10.1016/j.isci.2020.101160

Published
24-12-2025
How to Cite
Zolotov N. N., Shchipkova E. S., Alekseeva E. V., Filippov A. G., Morozov S. G. Changes in corticosterone levels and enzyme activities of thyroid hormone liberin metabolism in rats during cold swimming stress // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2025. VOL. 69. № 4. PP. 150–156.
Section
Original research