Роль инфламмасом в патогенезе социально-значимых заболеваний человека

  • Сергей Викторович Пирожков ФГАОУ ВО «Первый Московский государственный медицинский университет» имени И.М. Сеченова Минздрава России (Сеченовский Университет), 119991, г. Москва, Россия, ул. Трубецкая, д. 8, стр. 2
  • Петр Францевич Литвицкий ФГАОУ ВО «Первый Московский государственный медицинский университет» имени И.М. Сеченова Минздрава России (Сеченовский Университет), 119991, г. Москва, Россия, ул. Трубецкая, д. 8, стр. 2
Ключевые слова: инфламмасома, NLRP3, IL-1b, атеросклероз, ишемическая болезнь сердца, сахарный диабет, болезни легких, гепатит, нефропатия

Аннотация

Инфламмасома — важный компонент нативного иммунитета. Она представляет собой макромолекулярный комплекс, включающий сенсорные элементы, адапторные белки и зимоген каспазы-1. Под действием продуктов распада тканей и патогенных микроорганизмов инфламмасома активируется и превращает про-IL-1b и про-IL-18 в активные интерлейкины. Активация инфламмасом отмечена при многих воспалительных заболеваниях и служит мишенью для терапевтических воздействий. В настоящем обзоре обсуждается вклад инфламмасом в патогенез социально-значимых заболеваний человека, таких, как атеросклероз, ишемическая болезнь сердца, сахарный диабет, артриты, болезни легких, печени и почек. Результаты клинических исследований и модельных экспериментов на линиях мышей с нокаутированными генами компонентов инфламмасомы говорят о существенной роли этих структур в прогрессировании патологии, связанной с воспалительным повреждением тканей.

Скачивания

Данные скачивания пока не доступны.

Литература

1. Latz E., Xiao T.S., Stutz A. Activation and regulation of the inflam masomes. Nat. Rev. Immunol. 2013; 13: 397-411.
2. Sharma D., Kanneganti T.D. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J. Cell Biol. 2016; 213: 617-29.
3. Chen G.Y., Nuсez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 2010; 10: 826-37.
4. Martinon F., Burns K., Tschopp J.: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002; 10: 417-426.
5. Martinon F., Mayor A., Tschopp J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 2009; 27: 229-65.
6. Dinarello C.A. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur. J. Immunol. 2011; 41: 1203-17.
7. Embry C.A., Franchi L., Nunez G., Mitchell T.C. Mechanism of impaired NLRP3 inflammasome priming by monophosphoryl lipid A. Sci Signal 2011; 4: ra28.
8. van de Veerdonk F.L., Netea M.G., Dinarello C.A., Joosten L.A. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 2011; 32: 110-6.
9. Guarda G., Zenger M., Yazdi A.S., Schroder K., Ferrero I., Menu P. et al. Differential expression of NLRP3 among hematopoietic cells. J. Immunol. 2011; 186: 2529-34.doi:10.4049/jimmunol.1002720.
10. Zhong Y., Kinio A., Saleh M. Functions of NOD-like receptors in human diseases. Front. Immunol. 2013; 4: 333. doi:10.3389/fimmu. 00333.
11. Sutterwala F.S., Haasken S., Cassel S.L. Mechanism of NLRP3 inflammasome activation. Ann. N.Y .Acad. Sci. 2014; 1319: 82-95.doi: 10.1111/nyas.12458.
12. Ozaki E.,Campbell M., Doyle S.L. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J. Inflamm.Res. 2015; 8: 15-27.doi:10.2147/JIR.S51250.
13. Franchi L., Munoz-Planillo R., Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat.Immunol. 2012; 13: 325-332.doi: 10.1038/ni.2231.
14. Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G. NLRP3 inflamasomes are required for atherogenesis and activated by cholesterol crystals that form early in disease. Nature 2010; 464: 1357-61.
15. Karasawa T., Takahashi M. Role of NLRP3 inflammasomes in atherosclerosis. J. Atheroscler. Thromb. 2017; 24: 1-9.
16. Stewart C.R., Stuart L.M., Wilkinson K., van Gils J.M., Denq J. et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol. 2010; 11: 155-61.
17. Martinon F., Petrilli V., Mayor A., Tardivel A., Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006; 440: 237-41.
18. Chen C.J. et al. Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat. Med. 2007; 13: 851-6.
19. Varghese G.P., Folkersen L., Strawbridge R.J., Halvorsen B, Yndestad A. et al. NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc. 2016; 5:e003031 doi: 10.1161/JAHA.115.003031
20. Zhou R., Yazdi A.S., Menu P., Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469: 221-5.
21. Shi C.S., Shenderov K., Huang N.N., Kabat J., Abu-Asab M., Fitzgerald K.A., Sher A. Kehrl J.H. Activation of autophagy by inflammatory signals limits IL-1b production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 2012; 13: 255-63.
22. Razani B., Feng C., Coleman T., Emanuel R., Wen H. et al. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 2012; 15: 534-544.
23. Emanuel R., Sergin I., Bhattacharya S., Turner J.N. Epelman S., Settembre C., Diwan A., Ballabio A., Razani B. Induction of lysosomal biogenesis in atherosclerotic macrophages can rescue lipid-induced lysosomal dysfunction and downstream sequelae. Arterioscler. Thromb. Vasc. Biol. 2014; 34: 1942-52.
24. Marchant D.J., Boyd J.H., Lin D.C., Granville D.J., Garmaroudi F.S., McManus B.M. Inflammation in myocardial diseases. Circ. Res. 2012; 110: 126-44.
25. Abbate A., Salloum F.N., Vecile E. et al. Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 2008; 117: 2670-83.
26. Kawaguchi M., Takahashi M., Hata T. et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123: 594-604.
27. Mezzaroma E., Toldo S., Farkas D. et al. The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc. Natl. Acad. Sci. USA 2011; 108: 19725-30.
28. Mariathasan S., Weiss D.S., Newton K. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006; 440: 228-32.
29. Wen H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 2011; 12: 408-15.
30. Hotamisligil G.S., Shargill N.S., Spiegelman B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259: 87-91.
31. Legrand-Poels S. et al. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 2014; 92: 131-41.
32. Legrand-Poels S., Esser N., L’homme L., Scheen A., Paquot N., Piette J. Free fatty acids as modulators of the NLRP3 inflammasome in obesity/type 2 diabetes. Biochem. Pharmacol. 2014; 92: 131-41.
33. Ruscitti P., Cipriani P., DiBenedetto P., Liakouli V., Berardicurti O., Carubbi F. et al. Monocytes from patients with rheumatoid arthritis and type 2 diabetes mellitus display an increased production of interleukin(IL)-1beta via the nucleotide-binding domain and leucine-rich repeat containing family pyrin 3(NLRP3)-inflammasome activation: a possible implication for therapeutic decision in these patients. Clin. Exp. Immunol. 2015; 182: 35-44.
34. Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010; 11: 136-40.
35. Stienstra R. et al. Inflammasome is a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA 2011; 108: 15324-29.
36. Masters S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1b in type 2 diabetes. Nat. Immunol. 2010; 11: 897-904.
37. Larsen C.M., Faulenbach M., Vaag A., Volund A., Ehses J.A., et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 2007; 356: 1517-26.
38. Lamkanfi M., Mueller J.L., Vitari A.C., Misaghi S., Fedorova A. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 2009; 187: 61-70.
39. Pontillo A., Brandao L., Guimaraes R., Segat L., Araujo J., Crovella S. Two SNPs in NLRP3 gene are involved in the predisposition to type-1 diabetes and celiac disease in a pediatric population from northeast Brazil. Autoimmunity. 2010; 43: 583-9. doi:10.3109/08916930903540432
40. Carlos D., Costa1 F.R.C., Pereira C.A., Rocha F.A., Yaochite J.N.U., Oliveira G.G. et al. Mitochondrial DNA activates the NLRP3 inflammasome and predisposes to type 1 diabetes in murine model. Front. Immunol. 2017; 8: 164. doi: 10.3389/fimmu.2017.00164.
41. Doz E., Noulin N., Boichot E., Gue` non I., Fick L. et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J. Immunol. 2008; 180: 1169-78.
42. Kang M.J., Choi J.M., Kim B.H., Lee C.M., Cho W.K. et al. IL-18 induces emphysema and airway and vascular remodeling via IFN-g, IL-17A, and IL-Am. J. Respir. Crit. Care Med. 2012; 185: 1205-17.
43. Eltom S., Belvisi M.G., Stevenson C.S., Maher S.A., Dubuis E., Fitzgerald K.A., Birrell M.A. Role of the inflammasome-caspase1/11-IL-1/18 axis in cigarette smoke driven airway inflammation: an insight into the pathogenesis of COPD. PLoS One. 2014; 9: e112829.
44. Eltom S., Stevenson C.S., Rastrick J., Dale N., Raemdonck K. et al. P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. PLoS One. 2011; 6: e24097.
45. Kuschner W.G., D’Alessandro A., Wong H., Blanc P.D. Dose-dependent cigarette smoking-related inflammatory responses in healthy adults. Eur. Respir. J. 1996; 9: 1989-94.
46. Pauwels N.S., Bracke K.R., Dupont L.L., Van Pottelberge G.R., Provoost S. et al. Role of IL-1a and the Nlrp3/caspase-1/IL-1b axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur. Respir. J. 2011; 38: 1019-28.
47. Rovina N., Dima E., Gerassimou C., Kollintza A., Gratziou C., Roussos C. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir. Med. 2009; 103: 1056-62.
48. Bartziokas K., Papaioannou A.I., Loukides S., Papadopoulos A., Haniotou A., Papiris S., Kostikas K. Serum uric acid as a predictor of mortality and future exacerbations of COPD. Eur. Respir. J. 2014; 43: 43-53.
49. Di Stefano A., Caramori G., Barczyk A., Vicari C., Brun P., Zanini A. et al. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax 2014; 69: 516-24.
50. Brusselle G.G., Provoost S., Bracke K.R., Kuchmiy A., Lamkanfi M. Inflammasomes in respiratory disease: from bench to bedside. Chest 2014; 145: 1121-33.
51. Idzko M., Hammad H., van Nimwegen M., Kool M., Willart M.A. et al. Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat. Med. 2007; 13: 913-9.
52. Kim S.R., Kim D.I., Kim S.H., Lee H., Lee K.S. et al. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis. 2014; 5: e1498.
53. Besnard A.G., Guillou N., Tschopp J., Erard F., Couillin I. et al. NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy 2011; 66: 1047-1057.
54. Allen I.C., Jania C.M., Wilson J.E., Tekeppe E.M., Hua X. et al. Analysis of NLRP3 in the development of allergic airway disease in mice. J. Immunol. 2012; 188: 2884-93.
55. Bruchard M., Rebe` C., Derange`re V., Togbe` D., Ryffel B. et al. The receptor NLRP3 is a transcriptional regulator of TH2 differentiation. Nat. Immunol. 2015; 16: 859-70.
56. Thomas P.G., Dash P., Aldridge J.R.Jr., Ellebedy A.H., Reynolds C. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity. 2009; 30: 566-75.
57. Allen I.C., Scull M.A., Moore C.B., Holl E.K., McElvania-TeKippe E. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity. 2009; 30: 556-65.
58. McNeela E.A., Burke A., Neill D.R., Baxter C., Fernandes V.E. et al. Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR PLoS Pathog. 2010; 6: e1001191.
59. Shimada K., Crother T.R., Karlin J., Chen S., Chiba N. et al. Caspase-1 dependent IL-1b secretion is critical for host defense in a mouse model of Chlamydia pneumoniae lung infection. PLoS One. 2011; 6: e21477.
60. Mishra B.B., Moura-Alves P., Sonawane A., Hacohen N., Griffiths G. et al. Mycobacterium tuberculosis protein ESAT-6 is a potent activator of the NLRP3/ASC inflammasome. Cell Microbiol. 2010; 12: 1046-63.
61. McElvania Tekippe E., Allen I.C., Hulseberg P.D., Sullivan J.T., McCann J.R. et al. Granuloma formation and host defense in chronic Mycobacterium tuberculosis infection requires PYCARD/ASC but not NLRP3 or caspase-1. PLoS One 2010; 5: e12320.
62. Gasse P., Riteau N., Charron S., Girre S., Fick L. et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 2009; 179: 903-13.
63. Riteau N., Gasse P., Fauconnier L., Gombault A., Couegnat M. et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 2010; 182: 774-83.
64. Xu J.F., Washko G.R., Nakahira K., Hatabu H., Patel A.S. et al. COPDGene Investigators. Statins and pulmonary fibrosis: the potential role of NLRP3 inflammasome activation. Am. J. Respir. Crit. Care Med. 2012; 185: 547-556.
65. Rimessi A., Bezzerri V., Patergnani S., Marchi S., Cabrini G., Pinton P. Mitochondrial Ca21-dependent NLRP3 activation exacerbates the Pseudomonas aeruginosa-driven inflammatory response in cystic fibrosis. Nat. Commun. 2015; 6: 6201.
66. Villegas L.R., Kluck D., Field C., Oberley-Deegan R.E., Woods C. et al. Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxid. Redox Signal 2013; 18: 1753-64.
67. Cero F.T., Hillestad V., Sjaastad I., Yndestad A., Aukrust P. et al. Absence of the inflammasome adaptor ASC reduces hypoxia-induced pulmonary hypertension in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2015; 309: L378-L387.
68. Mizushina Y., Shirasuna K., Usui F., Karasawa T., Kawashima A. et al. NLRP3 protein deficiency exacerbates hyperoxia-induced lethality through Stat3 protein signaling independent of interleukin-1b. J. Biol. Chem. 2015; 290: 5065-77.
69. Dolinay T., Kim Y.S., Howrylak J., Hunninghake G.M., An C.H. et al. Inflammasome-regulated cytokines are critical mediators of acute lung injury. Am. J. Respir. Crit. Care Med. 2012; 185: 1225-34.
70. Dostert C., Petrilli V., Van Bruggen R., Steele C., Mossman B.T. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008; 320: 674-7.
71. Hari A.., Zhang Y., Tu Z., Detampel P., Stenner M., Ganguly A.,et al.(2014). Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep. 2014; 4: 7281.
72. Burdette D., Haskett A., Presser L., McRae S., Iqbal J., Waris G. Hepatitis C virus activates interleukin-1b via caspase-1-inflammasome complex. J. Gen. Virol. 2012; 93: 235-246.
73. Henao-Mejia J., Elinav E., Jin C., Hao L., Mehal W.Z., Strowig T. et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482: 179-185.
74. Xu C., Bailly-Maitre B., Reed J.C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 2005; 115: 2656-64.
75. McCullough K.D., Martindale J.L., Klotz L.O., Aw T.Y., Holbrook N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol. Cell Biol. 2001; 21: 1249-59.
76. Rousseau D., Bonnafous S. et al. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death and Disease. 2015; 6: e1879; doi:10.1038/cddis.2015.248.
77. Zhang J., Zhang K., Li Z., Guo B. ER Stress-induced inflammasome activation contributes to hepatic inflammation and steatosis. J. Clin. Cell Immunol. 2016; 7: doi:10.4172/2155-9899.1000457.
78. Cannito C., Morello E., Bocca C., Foglia B., Benetti E. et al. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS ONE. 2017; 12(3): e0172575.doi:10.1371/journal.pone.0172575.
79. Gonzаlez-Navajas J.M. Inflammasome activation in decompensated liver cirrhosis. World J. Hepatol. 2016; 8: 207-10.
80. Cui K., Yan G., Xu C., Chen Y., Wang J. et al. Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1b in mice. J. Hepatol. 2015; 62: 1311-8.
81. Панченко Л.Ф., Пирожков С.В., Теребилина Н.Н., Баронец В.Ю., Перегуд Д.И., Алябьева Т.Н., Федоров И.Г., Тотолян Г.Г. Эндотоксинемия, генерация цитокинов и интенсивность перекисного окисления липидов у больных алкогольной зависимостью с поражением печени различной тяжести. Вопросы наркологии 2009; 2: 39-48.
82. Peng Y., French B.A., Tillman B., Morgan T., French S.W. The inflammasome in alcoholic hepatitis: its relationship with Mallory-Denk body formation. Exp. Mol. Pathol. 2014; 97: 305-13.
83. Petrasek J., Bala S., Csak T., Lippai D., Kodys K. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 2012; 122: 3476-89.
84. Petrasek J., Iracheta-Vellve A., Saha B., Satishchandran A., Kodys K. et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. 2015; 98: 249-56.
85. Brenner B.M., Cooper M.E., de Zeeuw D., Keane W.F., Mitch W.E. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 2001; 345: 861-9.
86. Ruiz-Ortega M., Lorenzo O., Ruperez M., Konig S., Wittig B., Egido J. Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ. Res. 2000; 86: 1266-72.
87. Wen Y., Liu Y., Tang T., Lv L., Liu H., Ma K., Liu B. NLRP3 inflammasome activation is involved in Ang II-induced kidney damage via mitochondrial dysfunction. Oncotarget 2016; 7: 54290-302.
88. Shen J., Wang L., Jiang N., Mou S., Zhang M. et al. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Scientific Reports. 2016; 6: 34682 DOI: 10.1038/srep34682.
89. Shahzad K., Bock F., Dong W., Wang H., Kopf S. et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int. 2015; 87: 74-84.
90. Wang S., Li Y., Fan J., Zhang X., Luan J. et al. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation. Cell Death and Disease. 2017; 8: e2937; doi:10.1038/cddis.2017.292.
91. Yuan F., Kolb R., Pandey G., Li W., Sun L. et al. Involvement of the NLRC4-inflammasome in diabetic nephropathy. PLoS ONE 2016; 11: doi:10.1371/journal.pone.0164135
92. Zhu J., Wang H., Yang D. IgA nephropathy with pathologic features of membranoproliferative glomerulonephritis following burn injury. Case Rep. Nephrol. Urol. 2014; 4:31-6.
93. Silva G. E. et al. Renal macrophage infiltration is associated with a poor outcome in IgA nephropathy. Clinics (Sao Paulo) 2012; 67: 697-703.
94. Tsai Y.-L., Hua K.-F., Chen A., Wei C.-W., Chen W.-S. et al. NLRP3 inflammasome: Pathogenic role and potential therapeutic target for IgA nephropathy. Scientific Reports. 2017; 7: 41123 DOI: 10.1038/srep41123.
95. Bani-Hani A.H., Leslie J.A., Asanuma H. et al. IL-18 neutralization ameliorates obstruction-induced epithelial-mesenchymal transition and renal fibrosis. Kidney Int. 2009; 76: 500-11.
96. Vilaysane A., Chun J., Seamone M.E. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 2010; 21: 1732-44.
97. Guo H., Bi X., Zhou P., Zhu S., Ding W. NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators of Inflammation. 2017; 2017: Article ID 8316560.
98. Felix Knauf F., Asplin J.R., Granja I., Schmidt I.M., Moeckel G. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013; 84: 895-901.
99. Mulay S.R., Kulkarni O.P., Rupanagudi K.V. et al. Calcium oxalate crystals induce renal inflammation by Nlrp3-mediated IL-1b secretion. J. Clin. Invest. 2013; 123: 236-46.
100. Van Tassell B.W., Toldo S., Mezzaroma E., Abbate A. Targeting interleukin-1 in heart disease. Circulation 2013; 128: 1910-23.
101. Abbate A., Van Tassell B.W., Biondi-Zoccai G.G. Blocking interleukin-1 as a novel therapeutic strategy for secondary prevention of cardiovascular events. BioDrugs. 2012; 26: 217-33.
Опубликован
2018-01-27
Как цитировать
, . Роль инфламмасом в патогенезе социально-значимых заболеваний человека // Патологическая физиология и экспериментальная терапия. 2018. Т. 62. № 1. С. 77-89.
Раздел
Обзоры