Саркопения

  • Александр Александрович Пальцын ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии», 125315, г. Москва, Россия, ул. Балтийская, д. 8; Государственное бюджетное образовательное учреждение дополнительного профессионального образования Российская медицинская Академия последипломного образования, 123995, г. Москва, Россия, ул. Баррикадная, д. 2/1
Ключевые слова: старение, динапения, нагрузки, хрупкость, гериатрия, мышца, сила, тренировка

Аннотация

Саркопения (старческое уменьшение силы и массы мышц) прогрессировала в распространенности и тяжести проявления вместе с прогрессом медицины и развитием цивилизации. На заре человечества проблемы не было, поскольку до саркопении не доживали. Затем в течение многих тысяч лет с малым количеством стариков в популяции и отвлечением внимания инфекционными эпидемиями, медицине было «не до неё». Следствия быстрого старения человечества в конце XX и начале XXI веков вывели саркопению из тени в разряд самых актуальных проблем современной медицины. Саркопения приобрела своё название около 30 лет назад, год назад вошла в международную классификацию болезней, а сегодня уже называется гериатрическим гигантом. Взлет популярности закономерен и достоин ещё большего внимания по двум причинам. Во-первых. Саркопенией обусловлены многие беды старости: физическая слабость, депрессия, боли, снижение качества жизни, оптимизма, трудоспособности, рост травматизма, инвалидность, утрата независимости, смертность. Во-вторых. Саркопения затрудняет и снижает двигательную активность, чем способствует развитию наиболее распространенных болезней, эпидемий неинфекционной природы: гипертонической болезни, атеросклероза, диабета, рака, деменции, воспалений, остеопороза. Профилактика и лечение саркопении отодвигает или предотвращает приход её «спутников».

Скачивания

Данные скачивания пока не доступны.

Литература

1. Rosenberg H. Summary comments. Am J Clin Nutr 1989; 50:1231S–1233S; Цит. по Rosenberg IH Sarcopenia: origins and clinical relevance. J Nutr 1997; 127, 990S–991S.
2. Ундрицов В. М., Ундрицов И. М., Серова Л. Д. Возрастные изменения мышечной системы в кн. «Руководство по геронтологии» под реакцией акад. Шабалина В. Н., изд-во «Цитадель Трейд» Москва, 2005; с. 486—499.
3. AIM Coalition Announces Establishment of ICD-10-CM (M62.84) Code for Sarcopenia by the Centers for Disease Control and Prevention, April 28, 2016.
4. Morley J.E. Frailty and Sarcopenia: The New Geriatric Giants. Rev Invest Clin. 2016; Mar-Apr;68(2):59-67.
5. Keevil V.L., Romero-Ortuno R. Ageing well: a review of sarcopenia and frailty. Proc Nutr Soc. 2015; Nov. 74(4):337-47.
6. Fried LP, Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J. et al. Frailty in Older Adults: Evidence for a Phenotype J Gerontol A Biol Sci Med Sci. 2001; 56:M146–M156.
7. Morley J.E., Malmstrom T.K., Rodriguez‐Manas L., Sinclair A.J. Frailty, sarcopenia and diabetes. J Am Med Dir Assoc. 2014;15:853–859.
8. Gill T.M., Gahbauer E.A., Allore H.G., Han L. Transitions between frailty states among community-living older persons. Arch Intern Med. 2006; 166, 418–423.
9. Papa E.V., Dong X., Hassan M. Skeletal Muscle Function Deficits in the Elderly: Current Perspectives on Resistance Training. J Nat Sci. 2017; Jan;3(1). pii: e272.
10. Peterson M.D., Rhea M.R., Sen A., Gordon P.M. Resistance exercise for muscular strength in older adults: a metaanalysis. Ageing Res Rev 9, 2010; 226–237.
11. Gomes M.J., Martinez P.F., Pagan L.U., Damatto R.L., Cezar M.D., Lima A.R. et al. Skeletal muscle aging: influence of oxidative stress and physical exercise. Oncotarget. 2017; Mar 21; 8(12): 20428–20440.
12. Clark B.C., Manini T.M. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008; 63:829–34.
13. Manini T.M., Clark B.C. Dynapenia and aging: an update. J Gerontol A Biol Sci Med Sci. 2012; Jan;67(1):28-40.
14. Delmonico M.J., Harris T.B., Visser M., Park S.W., Conroy M.B., Velasquez-Mieyer P. et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration Am J Clin Nutr. 2009; Dec;90(6):1579-85.
15. Clark B.C., Manini T.M. What is dynapenia? Nutrition. 2012; May;28(5):495-503.
16. Christie A., Kamen G. Doublet discharges in motoneurons of young and older adults. J Neurophysiol. 2006; 95:2787–95.
17. Good C.D., Johnsrude I.S., Ashburner J., Henson R.N., Friston K.J., Frackowiak R.S. A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage. 2001; 14(1 Pt. 1): 21-36.
18. Marner L., Nyengaard J.R., Tang Y., Pakkenberg B. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol. 2003;462:144–52.
19. Fathi D., Ueki Y., Mima T., Koganemaru S., Nagamine T., Tawfik A. et al. Effects of aging on the human motor cortical plasticity studied by paired associative stimulation. Clin Neurophysiol. 2009;121:90–3.
20. Delmonico M.J., Harris T.B., Visser M., Park S.W., Conroy M.B., Velasquez-Mieyer P. et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009; 90:1579–85.
21. Kim T.N., Choi K.M. Sarcopenia: Definition, epidemiology, and pathophysiology. J Bone Metab. 2013; 20:1–10.
22. Barber L., Scicchitano B.M., Musaro А. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors. Eur J Transl Myol. 2015; Aug 25;25(4):231-6.
23. Barberi L., Scicchitano B.M., De Rossi M., Bigot A., Duguez S., Wielgosik A. et al. Age-dependent alteration in muscle regeneration: the critical role of tissue niche. Biogerontology. 2013; Jun; 14(3): 273–292.
24. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member. Nature 1997;387:83-90.
25. Lee S.J., Lee Y.S., Zimmers T.A., Soleimani A., Matzuk M.M., Tsuchida K. et al. Regulation of muscle mass by follistatin and activins. Mol Endocrinol.2010; Oct;24(10):1998-2008.
26. White T.A., LeBrasseur N.K. Мyostatin and sarcopenia: opportunities and challenges - a mini-review. Gerontology. 2014;60(4):289-93.
27. Latres E., Mastaitis J., Fury W., Miloscio L., Trejos J., Pangilinan J. et al. Activin A more prominently regulates muscle mass in primates than does GDF8. Nat Commun. 2017; Apr 28;8:15153.
28. Bergen H.R., Farr J.N., Vanderboom P.M., Atkinson E.J., White T.A., Singh R.J. et al. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: insights using a new mass spectrometry-based assay Skelet Muscle. 2015; 5: 21.
29. Harman D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology. 2009; Dec;10(6):773-81.
30. Quick K.L., Ali S.S., Arch R., Xiong C., Wozniak D., Dugan L.L. A carboxyfullerene SOD mimetic improves cognition and extends the lifespan of mice. Neurobiol Aging. 2008;29:117 –28.
31. Chandrasekaran A., Sosa Idelchik M., Melendez J. A Redox control of senescence and age-related disease. Redox Biol. 2017; Apr; 11: 91–102.
32. Rugarli E., Trifunovic A. Is mitochondrial free radical theory of aging getting old? Biochim Biophys Acta. 2015; Nov;1847(11):1345-6.
33. Coen P.M., Jubrias S.A., Distefano G., Amati F., Mackey D.C., Glynn N.W. et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci. 2013; 68: 447–455.
34. Gomes A.P., Price N.L., Ling A.J., Moslehi J.J., Montgomery M.K., Rajman L. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013; 155: 1624–1638.
35. Joseph A.M., Adhihetty P.J., Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol. 2016;594:5105–23.
36. Carter H.N., Chen C.C., Hood D.A. Mitochondria, muscle health, and exercise with advancing age. Physiology. 2015;30:208–223.
37. Wenz T., Rossi S.G., Rotundo R.L., Spiegelman B.M., Moraes C.T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009; 106: 20405–20410.
38. Garnier A., Fortin D., Zoll J., N’Guessan B., Mettauer B., Lampert E. et al. Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J. 2005;19, 43–52
39. Joseph A.M., Adhihetty P.J., Buford T.W., Wohlgemuth S.E., Lees H.A., Nguyen L.M. et al. The impact of aging on mitochondrial function and biogenesis pathways in skeletal muscle of sedentary high- and low-functioning elderly individuals. Aging Cell 2012; 11, 801–809.
40. Morley J.E. Pharmacologic Options for the Treatment of Sarcopenia. Calcif Tissue Int. 2016;98:319–33.
41. Johnson M.L., Lanza I.R., Short D.K., Asmann Y.W., Nair K.S. Chronically endurance-trained individuals preserve skeletal muscle mitochondrial gene expression with age but differences within age groups remain. Physiol Rep 2014; 2, e12239.
42. Лукьянова Л.Д. Митохондриальная дисфункция – молекулярный механизм гипоксии. Патогенез. 2003; 1: 52-67.
43. Лукьянова Л.Д. Современные проблемы адаптации к гипоксии. Сигнальные механизмы и их роль в системной регуляции. Патологическая физиология и экспериментальная терапия. 2011; 1: 3-19.
44. Calvani R., Joseph A.M., Adhihetty P.J., Miccheli A., Bossola M., Leeuwenburgh C. et al. Mitochondrial pathways in sarcopenia of aging and disuse muscle atrophy. Biol Chem. 2013; 394: 393–41.
45. Phu S., Boersma D., Duque G. Exercise and Sarcopenia. J Clin Densitom. 2015;18:488–92.
46. Bouzid M.A., Filaire E., McCall A., Fabre C. Radical oxygen species, exercise and aging: an update. Sports Med. 2015;45:1245–61.
47. Bosaeus I., Rothenberg E. Nutrition and physical activity for the prevention and treatment of age-related sarcopenia. Proc Nutr Soc. 2016; May;75(2):174-80.
48. Hepple R.T., Rice C.L. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol. 2016; Apr 15;594(8):1965-78.
49. Blau H.M., Cosgrove B.D., Ho A.T. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015 Aug;21(8):854-62.
50. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. Journal of the neurological sciences. 1988;84:275–294.
51. Laura Barberi, Bianca Maria Scicchitano, and Antonio Musaro Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors Eur J Transl Myol. 2015; Aug 24; 25(4): 5227.
52. Wall BT, Gorissen SH, Pennings B, Koopman R, Groen BB, Verdijk LB, van Loon LJ. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion. PloS one. 2015;10:e0140903.
53. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, et al. Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. 2009;587:211–7.
54. Lamboley CR, Wyckelsma VL, Dutka TL, McKenna MJ, Murphy RM, Lamb GD. Contractile properties and sarcoplasmic reticulum calcium content in type I and type II skeletal muscle fibres in active aged humans. J Physiol. 2015;593:2499–2514.
55. Gava P, Kern H, Carraro U. Age-associated power decline from running, jumping, and throwing male masters world records. Exp Aging Res. 2015;41(2):115–35.
56. Helmut Kern and Ugo Carraro Home-Based Functional Electrical Stimulation for Long-Term Denervated Human Muscle: History, Basics, Results and Perspectives of the Vienna Rehabilitation Strategy Eur J Transl Myol. 2014; Mar 31; 24(1): 3296.
57. Melissa Braga, Zena Simmons, Keith C Norris, Monica G Ferrini, and Jorge N Artaza Vitamin D induces myogenic differentiation in skeletal muscle derived stem cells. Endocr Connect. 2017; Apr; 6(3): 139–150.
58. Anagnostis P, Dimopoulou C, Karras S, Lambrinoudaki I, Goulis DG. Sarcopenia in post-menopausal women: is there any role for vitamin D? Maturitas. 2015;82:56–64.
59. Оберлис Д., Скальный А.В., Скальная М.Г., Никаноров А.А., НиканороваЕ.А. Патофизиология микроэлементозов. Сообщение 3. Железо. Патогенез. 2016; 14, №2, 20-27.
60. Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18:762–73.
61. Kobilo T Guerrieri D Zhang Y Collica SC Becker KG van Praag H AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learning & Memory. 2014; 21: (2):119–26.
62. Guerrieri, D., Moon, H. Y., van Praag, H. Exercise in a Pill: The Latest on Exercise-Mimetics. Brain Plasticity, 2017; vol. 2, no. 2, pp. 153-169.
63. Dolinsky VW Jones KE Sidhu RS Haykowsky M Czubryt MP Gordon T et al. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of Physiology. 2012; ;590: (11):2783–99.
64. Ugo Carraro,1,2 Helmut Kern,3,4 Paolo Gava,2 Christian Hofer,4 Stefan Loefler,4 Paolo Gargiulo et al. Biology of Muscle Atrophy and of its Recovery by FES in Aging and Mobility Impairments: Roots and By-Products Eur J Transl Myol. 2015; Aug 24; 25(4): 221–230.
65. Kern H, Barberi L, Löfler S,Sbardella S, Burggraf S, Fruhmann H et al Electrical stimulation counteracts muscle decline in seniors. Front Aging Neurosci. 2014; Jul 24;6:189.
66. Ugo Carraro, Simona Boncompagni, Valerio Gobbo, Katia Rossini, Sandra Zampieri, Simone Mosole et al. Persistent Muscle Fiber Regeneration in Long Term Denervation. Past, Present, Future. Eur J Transl Myol. 2015; Mar 11; 25(2): 4832.
67. Daly RM Exercise and nutritional approaches to prevent frail bones, falls and fractures: an update. Climacteric. 2017; Apr;20(2):119-124.
68. Hak Chul Jang Sarcopenia, Frailty, and Diabetes in Older Adults Diabetes Metab J. 2016; Jun; 40(3): 182–189.
Опубликован
2018-06-04
Как цитировать
Пальцын А. А. Саркопения // Патологическая физиология и экспериментальная терапия. 2018. Т. 62. № 2. С. 113-121.
Раздел
Обзоры