Use of flavonoids in experimental therapy of rheumatoid arthritis

Keywords: Rheumatoid arthritis, flavonoids, mechanism of action, prospects for clinical use.

Abstract

The review concerns the possibility of potential use of flavonoids in the complex treatment of rheumatoid arthritis (RA). The promising properties of flavonols, flavones, flavanones, flavan-3-ols and isoflavones are analyzed, including anti-inflammatory, antioxidant, antiproliferative, immunomodulatory effects in the absence of pronounced toxicity. The information based on numerous experimental data obtained in vitro studies and using models that adequately reproduce RA in rodents is considered. The antiarthritic effect of flavonoids is based on the ability to suppress the functional activity of immune cells, their recruitment to the site of inflammation of the synovial membrane with inhibition of the release and activation of proinflammatory cytokines and other inflammatory factors due to the effect on the corresponding transcription factors and intracellular signaling pathways. Antioxidant action, as well as inhibition of T- and B-lymphocyte activity by flavonoids, make a significant contribution to the development of the immune inflammation process. An important positive role is played by the suppression of hyperactivity of fibroblast-like synoviocytes and activation of their apoptosis in RA, which weakens the invasiveness of the pathological process and the formation of pannus. Inhibition of the activity of matrix metalloproteinases, which ensure the process of bone resorption in RA, is also important. Promising experimental data have been obtained by combining flavonoids with classical antiarthritic drugs, such as methotrexate. The greatest attention is currently paid to the antiarthritic efficacy of the flavonol quercetin.

Downloads

Download data is not yet available.

References

ЛИТЕРАТУРА
1. Насонов Е.Л. Проблемы иммунопатологии ревматоидного артрита: эволюция бо-лезни. Научно-практическая ревматология. 2017; 55 (3): 277-94. https://doi.org/10.14412/1995-4484-2017-277-294
2. Насонов Е.Л. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология.2023; 61 (4): 397-420. https://doi.org/10.47360/1995-4484-2023-397-420
3. Рыкунова А.Я., Зверев Я.Ф. Современные представления о патогенезе ревматоид-ного артрита. Патологическая физиология и экспериментальная терапия. 2024; 68 (4): 59-70. https://doi.org/10.25557/0031-2991.2024.04.59-70
6. Зверев Я.Ф., Рыкунова А.Я. Фармакология флавоноидов. Барнаул: КГБУ Типогра-фия Управления делами администрации Алтайского края. 2023, 178 c. ISBN 978-5-600-03709-0.
30. Зверев Я.Ф. Флавоноиды глазами фармаколога. Особенности и проблемы фарма-кокинетики. Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15 (2): 4-11. https://doi.org/10.17816/RCF1524-11

REFERENCES
1. Nasonov E.L. Problems of rheumatoid arthritis. Evolution of the disease. Nauchno-Prakticheskaya Revmatologiya. 2017; 55 (3): 277-94 (in Russian). https://doi.org/10.14412/1995-4484-2017-277-294
2. Nasonov E.L. Modern concept of autoimmunity in rheumatology. Nauchno-Prakticheskaya Revmatologiya. 2023; 61 (4): 397-420 (in Russian). https://doi.org/10.47360/1995-4484-2023-397-420
3. Rykunova A.Ya., Zverev Ya.F. Modern concepts of the pathogenesis of rheumatoid ar-thritis. Pathological Physiology and Experimental Therapy. 2024; 68 (4): 59-70. (In Russian). https://doi.org/10.25557/0031-2991.2024.04.59-70
4. Ding Q., Hu W., Wang R., Yang Q., Zhu M., Li M. et al. Signaling pathways in rheuma-toid arthritis: implications for targeted therapy. Signal Transduct. Target. Ther. 2023; 8:68. https://doi.org/10.1038/s41392-023-01331-9
5. Kwon D.Y, Gu J.H, Oh M., Lee E-J. Combination effects of herbal and western medi-cines on osteoporosis in rheumatoid arthritis: systematic review and meta-analysis. Front. Pharmacol. 2023; 14: 1164898. https://doi.org/10.3389/fphar.2023.1164898
6. Zverev Ya.F., Rykunova A.Ya. Pharmacology of flavonoids. Barnaul, 2023, 178 p. ISBN 978-5-600-03709-0. (in Russian)
7. Guardia T., Rotelli A.E., Juarez A.O., Pelzer L.E. Anti-inflammatory properties of plant flavonoids, effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farma-co. 2001; 56 (9): 683-687. https://doi.org/10.1016/s0014-827xMat(01)01111-9
8. Kauss T., Moynet D., Rambert J., Al-Kharrat A., Brajot S., Thiolat D. et al. Rutoside de-creases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis. Arthritis Res. Ther. 2008; 10 (1): R19. https://doi.org/10.1186/ar2372
9. Kawaguchi K., Kaneko M., Miyake R., Takimoto H., Kumazawa Y. Potent inhibitory effects of quercetin on inflammatory responses of collagen-induced arthritis in mice. Endocr. Metab. Immune Disord. Drug Tatgets. 2019; 19 (3): 308-315. https://doi.org/10.2174/1871530319666190206225034
10. Yuan K., Zhu Q., Lu Q., Jiang H., Zhu M., Li X. et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020; 84: 108454. https://doi.org/10.1016/j.jnutbio.2020.108454
11. Ansari M., Khan N.H.A. Quercetin alleviate oxidative stress and inflammation through upregulation of antioxidant machinery and down-regulation of COX2 and NF-κB ex-pression in collagen induced rheumatoid arthritis. Int. J. Drug Dev. Res. 2014; 6 (1): 215-232
12. Yang Y., Zhang X., Xu M., Wu X., Zhao F., Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of heme oxygenase 1-mediated anti-inflammatory effect. Int. Immunopharmacol. 2018; 54: 153-162. https://doi.org/10.1016/j.intimp.2017.11.013
13. Guazelli C.F.S., Staurengo-Ferrari L., Zarpelon A.C., Pinho-Ribeiro F.A., Ruiz-Miyazawa K.W, Vicentini F.T.M.C. et al. Quercetin attenuates zymosan-induced arthri-tis in mice. Biomed. Pharmacother. 2018; 102: 175-184. https://doi.org/10.1016/j.biopha.2018.03.057
14. Haleagrahara N., Hodgson K., Miranda-Hernandez S., Hughes S., Kulur A.B., Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018; 26 (5): 1219-1232. https://doi.org/10.1007/s10787-018-0464-2
15. Shen P., Lin W., Ba X., Huang Y., Chen Z., Han L. et al. Quercetin-mediated SIRT1 ac-tivation attenuates collagen-induced mice arthritis. J. Ethnopharmacol. 2021; 279: 114213. https://doi.org/10.1016/j.jep.2021.114213
16. Liu X., Tao T., Yao H., Zheng H., Wang F., Gao Y. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies. In-flammopharmacology. 2023; 31 (4): 1629-1645. https://doi.org/10.1007/s10787-023-01196-γ
17. Shao Y-R., Xu D-Y., Lin J. Nutrients and rheumatoid arthritis: from the perspective of neutrophils. Front. Immunol. 2023; 14: 1113607. https://doi.org/10.3389/fimmu.2023.1113607
18. Borghi S.M., Mizokami S.S., Pinho-Ribeiro F.A., Fattori V., Crespigio J. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J. Nutr. Bi-ochem. 2018; 53: 81-95. https://doi.org/10.1016/j.jnutbio.2017.10.010
19. El-Said K.S., Atta A., Mobasher M.A., Germoush M.O., Mohamed T.M., Salem M.M. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats. Mol. Med. 2022; 28: 24. https://doi.org/10.1186/s10020-022-00432-5
20. Tang M., Zeng Y., Peng W., Xie X., Yang Y., Ji B., Li F. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther. 2022; 16: 2043-2053. https://doi.org/10.2147/DDDT.S3647.59
21. Atta A., Salem M.M., El-Said K.S., Mohamed T.M. Mechanistic role of quercetin as in-hibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell. Mol. Biol. Let. 2024; 29 (1): 14. https://doi.org/10.1186/s11658-024-00531-7
22. Zhao J., Chen B., Peng X., Wang K., Han F., Xu J. Quercetin suppresses migration and invasion by targeting miR-146a/GATA6 axis in fibroblast-like synoviocytes of rheuma-toid arthritis. Immunopharmacol. Immunotoxicol. 2020; 42 (3): 2212-2227. https://doi.org/10.1080/08923973.2020.1742732
23. Kim H-R, Kim B-M, Won J-Y, Lee K-A, Ko H.M., Kang Y.S. et al. Quercetin, a plant polyphenol, has potential for the prevention of bone destruction in rheumatoid arthritis. J. Med. Food. 2019; 22 (2): 152-161. https://doi.org/ 10.1089/jmf.2018.4259
24. Saccol R.S.P., da Silveira K.L., Manzoni A.G., Abdalla F.H., de Oliveira J.S. Antioxi-dant, genoprotective, and cytoprotective effects of quercetin in a murine model of ar-thritis. J. Cell. Biochem. 2020; 121 (4): 2792-2801. https://doi.org/10.1002/jcb.29502
25. Endale M., Park S-C., Kim S., Kim S-H., Yang Y., Cho J.Y., Rhee M.H. Quercetin dis-rupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology. 2013; 218 (12): 1452-1467. https://doi.org/10.1016/j.imbio.2013.04.019
26. Zhang L., Zhang Y., Zhong W., Di C., Lin X., Xia Z. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell bal-ance. J. Biol. Chem. 2014; 289 (39): 26847-26858. https://doi.org/10.1074/jbc hepato-protective.M114.590554
27. Haleagrahara N., Miranda-Hernandez S., Alim M.A., Hayes L., Bird G., Ketheesan N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother. 2017; 90: 38-46. https://doi.org/10.1016/j.biopha.2017.03.026
28. Haleagrahara N., Hodgson K., Miranda-Hernandez S., Hughes S., Kulur A.B., Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018; 26 (5): 1219-1232. https://doi.org/10.1007/s10787-018-0464-2
29. Ibrachim S.S.A., Kandil L.S., Ragab G.M., El-Sayyad S.M. Micro RNAs 26b, 20a in-versely correlate with GSK-3β/NF-κB/NLRP-3 pathway to highlight the additive prom-ising effects of atorvastatin and quercetin in experimental induced arthritis. Int. Im-munopharmacol. 2021; 99: 108042. https://doi.org/10.1016/j.intimp.2021.108042
30. Zverev Ya.F. Flavonoids through the eyes of a pharmacologist. Features and problems of pharmacokinetics. Reviews on Clinical Pharmacology and Drug Therapy. 2017; 15 (2): 4-11. (In Russian). https://doi.org/10.17816/RCF1524-11
31. Zverev Ya.F., Rykunova A.Ya. Modern nanocarriers as a factor in increasing the bioa-vailability and pharmacological activity of flavonoids. Applied Biochemistry and Mi-crobiology. 2022; 58 (9): 1002-1020. https://doi.org/10.1134/s0003683822090149
32. Han Z., Gao X., Wang Y., Cheng S., Zhong X., Xu Y. et al. Ultrasmall iron-quercetin metal natural product nanocomplex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharmaceutica Sinica B. 2023; 13 (4): 1726-1739. https://doi.org/10.1016/j.apsb.2022.11.020
33. Jeyadevi R., Sivasudha T., Rameshkumar A., Ananth D.A, Aseervatham G.S.B. En-hancement of anti-arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats. Colloids Surf. B Biointerfaces. 2013; 112: 255-263. https://doi.org/10.1016/j.colsurfb.2013.07.065
34. Li X., Wang X., Qu X., Shi N., Li Q., Yan Z. et al. Microenvironmental enzyme-responsive methotrexate modified quercetin micelles for the treatment of rheumatoid arthritis. Int. J. Nanomedicine. 2024; 19: 3259-3273. https://doi.org/10.2147/IJN.S457004
35. Souza K.S., Moreira L.S., Silva B.T., Oliveira B.P.M., Carvalho A.S., Silva P.S. et al. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci. 2021; 284:119910. https://doi.org/10.1016/j.lfs.2021.119910
36. Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I., Khan A. et al. Quercetin-loaded chi-tosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammophar-macology. 2023; 31: 287-300. https://doi.org/10.1007/s10787-022-01118-4
37. Yoon H-y., Lee E-G., Lee H., Cho I.J., Choi Y.J., Sung M-S. et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the produc-tion of COX-2, PGE2 and MMPs. Int. J. Mol. Med. 2013; 32 (4): 971-977. https://doi.org/10.3892/ijmm.2013.1468
38. Pan D., Li N., Liu Y., Xu Q., Liu Q., You Y. et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol. 2018; 55: 174-182. https://doi.org/10.1016/j.intimp.2017.12.011
39. Lee C-J., Moon S-J., Jeong J-H., Lee S., Lee M-H., Yoo S-M. et al. Kaempferol target-ing on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis pre-vents the development of rheumatoid arthritis. Cell. Death Dis. 2018; 9 (3): 401. https://doi.org/10.1038/s41419-018-0433-0
40. Luo H., Zhang R. Icariin enhances cell survival in lipopolysaccharide-induced synovio-cytes by suppressing ferroptosis via the xc-/GPX4 axis. Exp. Ther. Med. 2021; 21: 72. https://doi.org/10.3892/etm.2020.9504
41. Wu Z.M., Luo J., Shi X.D., Zhang S.X., Zhu X.B., Guo J. Icariin alleviates rheumatoid arthritis via regulating miR-223-3p/NLRP3 signalling axis. Autoimmunity. 2020; 53 (8): 450-458. https://doi.org/10.1080/08916934.2020.1836488
42. Hughes S.D., Ketheesan N., Haleagrahara N. The therapeutic potential of plant flavo-noids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2017; 57 (17): 3601-3613. https://doi.org/10.1080/10408398.2016.1246413
43. Lee J.D., Huh J.E., Jeon G., Yang H.R., Woo H.S., Choi D-Y., Park D-S. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflam-mation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and in vivo models. Int. Immunopharmacol. 2009; 9 (3): 268-276. https://doi.org/10.1016/j.intimp.2008.11.005
44. Fu Q., Gao Y., Zhao H., Wang Z., Wang J. Galangin protects human rheumatoid arthritis fibroblast-like synoviocytes via suppression of the NF-κB/NLRP3 pathway. Mol. Med. Rep. 2018; 18 (4): 3619-3624. https://doi.org/10.3892/mmr.2018.9422
45. Liu X-R., Li S-F., Mei W-Y., Liu X-D., Zhou R-B. Isorhamnetin downregulates MMP2 and MMP9 to inhibit development of rheumatoid arthritis through SRC/ERK/CREB pathway. Chin. J. Integr. Med. 2024; 30 (4): 299-310. https://doi.org/10.1007/s11655-023-3753-6
46. Chakraborty D., Gupta K., Biswas S. A mechanistic insight of phytoestrogens used for rheumatoid arthritis: on evidence-based review. Biomed. Pharmakother. 2021; 133: 111039. https://doi.org/10.1016/j.biopha.2020.111039
47. Cao D., Fan Q., Li Z., Chen M., Jiang Y., Lin R. et al. Transcriptomic profiling revealed the role of apigenin-4’-O-α-L-rhamnoside in inhibiting the activation of rheumatoid ar-thritis fibroblast-like synoviocytes via MAPK signaling pathway. Phytomedicine. 2022; 102: 154201. https://doi.org/10.1016/j.phymed.2022.154201
48. Xiao B., Li J., Qiao Z., Yang S., Kwan H-Y., Jiang T. et al. Therapeutic effects of Sieg-esbeckia orientalis L. and its active compound luteolin in rheumatoid arthritis: network pharmacology, molecular docking and experimental validation. J. Ethnopharmacol. 2023; 317: 116852. https://doi.org/10.1016/j.jep.2023.116852
49. Dinda B., Dinda S., DasSharma S., Banik R., Chakraborty A., Dinda M. Therapeutic po-tentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017; 131: 68-80. https://doi.org/10.1016/j.ejmech.2017.03.004
50. Zhang X., Guan X., Piao Y., Che X., Si M., Jin J. Baicalein induces apoptosis of rheuma-toid arthritis synovial fibroblasts through inactivation of the PI3K/Akt/mTOR pathway. Evid. Based Complement. Alternat. Med. 2022; 2022: 3643265. https://doi.org/10.1155/2022/3643265
51. Yang J., Yang Y., Chu Y., Li M. Identification of baicalin as an immunoregulatory com-pound by controlling TH17 cell differentiation. PLoS One. 2011; 6 (2): e17164. https://doi.org/10.1371/journal.pone.0017164
52. Yang X., Yang J., Zou H. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clin. Dev. Immunol. 2013; 2013: 268065. https://doi.org/10.1155/2013/268065
53. Wang C., Song Y., Wang X., Mao R., Song L. Baicalin ameliorates collagen-induced ar-thritis through the suppression of Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) signaling in mice. Med. Sci. Monit. 2018; 24: 9213-9222. https://doi.org/10.12659/MSM.910347
54. Sun F., Gu W. Baicalin attenuates collagen-induced arthritis via inhibition of JAK2-STAT3 signaling and regulation of Th17 cells in mice. J. Cell. Commun. Signal. 2019; 13 (1): 65-73. https://doi.org/10.1007/s12079-018-0475-1
55. Bai L., Bai Y., Yang Y., Zhang W., Huang L., Ma R. et al. Baicalin alleviates collagen-induced arthritis and suppresses TLR2/MYD88/NF-κB p65 signaling in rats and HELS-RAs. Mol. Med. Rep. 2020; 22 (4): 2833-2841. https://doi.org/10.3892/mmr.2020.11369
56. Chen X., Wang Y., Cai J., Wang S., Cheng Z., Zhang Z., Zhang C. Anti-inflammatory effect of baicalin in rats with adjuvant arthritis and its autophagy-related mechanism. Technol. Health Care. 2022; 30 (S1): 191-200. https://doi.org/10.3233/THC-228018
57. Wang X-H., Dai C., Wang J., Liu R., Li L., Yin Z-S. Therapeutic effect of neohesperidin of TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes. Chin. J. Nat. Med. 2021; 19 (10): 741-749. https://doi.org/10.1016/S1875-5364(21)60107-3
58. Qi W., Lin C., Fan K., Chen Z., Liu L., Feng X. et al. Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT path-way in complete Freund’s adjuvant-induced arthritis in mice. Chem. Biol. Interact. 2019; 306: 19-28. https://doi.org/10.1016/j.cbi.2019.04.002
59. Li R., Li J., Cai L., Hu C-m., Zhang L. Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. JPP. 2008; 60 (2): 221-228. https://doi.org/10.1211/jpp.60.2.0011
60. Adefegha S.A., Bottari N.B., Leal D.B., de Andrade C.M., Scheitinger M.R. Interferon gamma/interleukin-4 modulation, anti-inflammatory and antioxidant effects of hesperi-din in complete Freund’s adjuvant (CFA)-induced arthritis model of rats. Immunophar-macol. Immunotoxicol. 2020; 42 (5): 509-520. https://doi.org/10.1080/08923973.1814806
61. Umar S., Kumar A., Sajad M., Zargan J., Ansari M., Ahmad S. et al. Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduc-tion in neutrophil activation and infiltration. Rheumatol. Int. 2012; 33 (3): 657-663. https://doi.org/10.1007/s00296-012-2430-4
62. Zhang G., Sun G., Guan H., Li M., Liu Y., Tian B. et al. Naringenin nanocrystals for im-proving anti-rheumatoid arthritis activity. Asian J. Pharm. Sci. 2021; 16 (6): 816-825. https://doi.org/10.1016/j.ajps.2021.09.001
63. Aihaiti Y., Cai Y.S., Tuerhong X., Yang Y.N., Ma Y., Zheng H.S. et al. Therapeutic ef-fects of naringin in rheumatoid arthritis: network pharmacology and experimental vali-dation. Front. Pharmacol. 2021; 12: 672054. https://doi.org/10.3389/fphar.2021.672054
64. Bussmann A.J.C., Borghi S.M., Zaninelli T.H., Dos Santos T.S., Guazelli C.F.S., Fattori V. et al. The citrus flavanone naringenin attenuates zymosan-induced mouse joint in-flammation: induction of Nrf2 expression in recruited CD45 hematopoietic cells. In-flammopharmacology. 2019; 27 (6): 1229-1242. https://doi.org/10.1007/s10787-018-00561-6
65. Jiang Y-P., Wen J-J., Zhao X-X., Gao Y-C., Ma X., Song S-Y. et al. The flavonoid naringenin alleviates collagen-induced arthritis through curbing the migration and po-larization of CD4+T lymphocyte driven by regulating mitochondrial fission. Int. J. Mol. Sci. 2023; 24: 279. https://doi.org/10.3390/ijms24010279
66. Xie X., Fu J., Gou W., Qin Y., Wang D., Huang Z. et al. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front. Med. 2024; 11: 1289777. https://doi.org/10.3389/fmed.2024.1289777
67. Ahmed S. Green tea polyphenol epigallocatechin 3-gallate in arthritis: progress and promise. Athritis Res. Ther. 2010; 12 (2): 208. https://doi.org/10.1186/ar2982
68. Kciuk M., Garg A., Rohilla R., Dhankhar S., Dhiman S., Dhiman S. et al. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis-comprehensive review. Antioxidants (Basel). 2024; 13 (7): 775. https://doi.org/10.3390/antiox13070775
69. Singh A.K., Umar S., Riegsecker S., Chourasia M., Ahmed S. Regulation of transform-ing growth factor β-activated kinase activation by epigallocatechin-3-gallate in rheuma-toid arthritis synovial fibroblasts: suppression of K(63)-linked autoubiquitination of tumor necrosis factor receptor-associated factor 6. Arthritis Rheumatol. 2016; 68 (2): 347-358. https://doi.org/10.1002/art.39447
70. Sivasakthi P., Priya E.S., Selvan P.S. Molecular insights into phytochemicals exhibiting anti-arthritic activity: systematic review: John Di Battista. Inflamm. Res. 2021; 70 (6): 665-685. https://doi.org/10.1007/s00011-021-01471-0
71. Liu X., Wang Z., Qian H., Tao W., Zhang Y., Hu C. et al. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol. 2022; 13: 945129. https://doi.org/10.3389/fimmu.2022.945129
72. Roy S., Sannigrahi S., Vaddepalli R., Ghosh B., Pusp P. A novel combination of metho-trexate and epigallocatechin attenuates the overexpression of pro-inflammatory carti-lage cytokines and modulates antioxidant status in adjuvant arthritic rats. Inflammation. 2012; 35 (4): 1435-1447. https://doi.org/10.1007/s10753-012-9457-2
73. Roy S., Sannigrahi S., Ghosh B., Pusp P., Roy T. Combination therapy of dexame-thasone with epigallocatechin enhances tibiotarsal bone articulation and modulates oxi-dative status correlates with cartilage cytokines expression in the early phase of experi-mental arthritis. Eur. J. Pharmacol. 2013; 698 (1-3): 444-454. https://doi.org/10.1016/j.ejphar.2012.11.004
74. Li J., Li J., Yue Y., Hu Y., Cheng W., Liu R. et al. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear fac-tor κB and adenosine monophosphate-activated protein linase signal pathways in human synoviocyte MH7A cells. Drug Des. Devel. Ther. 2014; 8: 315-323. https://doi.org/10.2147/DDDT.S52354
75. Zhang Y., Dong J., He P., Li W., Zhang Q., Li N., Sun T. Genistein inhibit cytokines or growth factor-induced proliferation and transformation phenotype in fibroblast-like synoviocytes of rheumatoid arthritis. Inflammation. 2012; 35 (1): 377-387. https://doi.org/10.1007/s10753-011-9365-x
76. Ramesh P., Jagadeesan R., Sekaran S., Dhanasekaran A., Vimalraj S. Flavonoids: classi-fication, function, and molecular mechanisms involved in bone remodelling. Front. En-docrinol (Lausanne). 2021; 12: 779638. https://doi.org/10.3389/fendo.2021.779638
77. Erdayandi G.E., Yilmaz O., Kerimoglu G., Sahin E., Dogan S.Y. Can intra-articular dai-dzein injection reduce oxidative damage and early osteoarthritis in a rabbit temporo-mandibular joint model? BMC Oral Health. 2024; 24 (1): 1193. https://doi.org/10.1186/s12903-024-04990-4
78. Ahmad S., Alam K., Hossain M.M., Fatima M., Firdaus F., Zafeer M.F. et al. Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol. Cell. Biochem. 2016; 423 (1-2): 115-127. https://doi.org/10.1007/s11010-016-2830-γ
79. Isik A., Koca S.S., Ustundag B., Celik H., Yildirim A. Paraxonase and arylesterase lev-els in rheumatoid arthritis. Clin. Rheumatol. 2007; 26: 342-348. https://doi.org/10.2147/s10067-006-0300-8
Published
27-10-2025
How to Cite
Zverev Y. F., Rykunova A. Y. Use of flavonoids in experimental therapy of rheumatoid arthritis // Patologicheskaya Fiziologiya i Eksperimental’naya Terapiya (Pathological physiology and experimental therapy). 2025. VOL. 69. № 4. PP. 182–195.
Section
Reviews