Применение флавоноидов в экспериментальной терапии ревматоидного артрита

  • Яков Федорович Зверев ФГБОУ ВО «Алтайский государственный медицинский университет» Минздрава России, 656038, Барнаул, Россия, пр. Ленина, д. 40 https://orcid.org/0000-0002-8101-103X
  • Анна Яковлевна Рыкунова ФГБОУ ВО «Алтайский государственный медицинский университет» Минздрава России, 656038, Барнаул, Россия, пр. Ленина, д. 40 https://orcid.org/0000-0002-5889-7071
Ключевые слова: Ревматоидный артрит, флавоноиды, механизм действия, перспективность клинического применения.

Аннотация

     Обзор касается возможности потенциального применения флавоноидов в комплексном лечении ревматоидного артрита (РА). Анализируются многообещающие свойства флавонолов, флавонов, флаванонов, флаван-3-олов и изофлавонов, включающие противовоспалительный, антиоксидантный, антипролиферативный, иммуномодулирующий эффекты при отсутствии выраженной токсичности. Рассматриваются сведения, которые базируются на многочисленных экспериментальных данных, полученных в исследованиях in vitro и при использовании моделей, адекватно воспроизводящих РА у грызунов. В основе противоартритного действия флавоноидов лежит способность подавлять функциональную активность иммунных клеток, их рекрутирование в очаг воспаления синовиальной оболочки с ингибированием высвобождения и активации провоспалительных цитокинов и других факторов воспаления вследствие воздействия на соответствующие транскрипционные факторы и пути внутриклеточного сигнализирования. Антиоксидантное действие, как и ингибирование флавоноидами активности Т- и В-лимфоцитов вносят существенный вклад в развитие процесса иммунного воспаления. Важную положительную роль играет угнетение при РА гиперактивности фибробластоподобных синовиоцитов и активация их апоптоза, что ослабляет инвазивность патологического процесса и формирование паннуса. Имеет значение и ингибирование активности матриксных металлопротеиназ, обеспечивающих процесс костной резорбции при РА. Многообещающие экспериментальные данные получены при комбинировании флавоноидов с классическими противоартритными препаратами, такими как метотрексат. Наибольшее внимание в настоящее время уделяется противоартритной эффективности флавонола кверцетина. 

Скачивания

Данные скачивания пока недоступны.

Литература

ЛИТЕРАТУРА
1. Насонов Е.Л. Проблемы иммунопатологии ревматоидного артрита: эволюция бо-лезни. Научно-практическая ревматология. 2017; 55 (3): 277-94. https://doi.org/10.14412/1995-4484-2017-277-294
2. Насонов Е.Л. Современная концепция аутоиммунитета в ревматологии. Научно-практическая ревматология.2023; 61 (4): 397-420. https://doi.org/10.47360/1995-4484-2023-397-420
3. Рыкунова А.Я., Зверев Я.Ф. Современные представления о патогенезе ревматоид-ного артрита. Патологическая физиология и экспериментальная терапия. 2024; 68 (4): 59-70. https://doi.org/10.25557/0031-2991.2024.04.59-70
6. Зверев Я.Ф., Рыкунова А.Я. Фармакология флавоноидов. Барнаул: КГБУ Типогра-фия Управления делами администрации Алтайского края. 2023, 178 c. ISBN 978-5-600-03709-0.
30. Зверев Я.Ф. Флавоноиды глазами фармаколога. Особенности и проблемы фарма-кокинетики. Обзоры по клинической фармакологии и лекарственной терапии. 2017; 15 (2): 4-11. https://doi.org/10.17816/RCF1524-11

REFERENCES
1. Nasonov E.L. Problems of rheumatoid arthritis. Evolution of the disease. Nauchno-Prakticheskaya Revmatologiya. 2017; 55 (3): 277-94 (in Russian). https://doi.org/10.14412/1995-4484-2017-277-294
2. Nasonov E.L. Modern concept of autoimmunity in rheumatology. Nauchno-Prakticheskaya Revmatologiya. 2023; 61 (4): 397-420 (in Russian). https://doi.org/10.47360/1995-4484-2023-397-420
3. Rykunova A.Ya., Zverev Ya.F. Modern concepts of the pathogenesis of rheumatoid ar-thritis. Pathological Physiology and Experimental Therapy. 2024; 68 (4): 59-70. (In Russian). https://doi.org/10.25557/0031-2991.2024.04.59-70
4. Ding Q., Hu W., Wang R., Yang Q., Zhu M., Li M. et al. Signaling pathways in rheuma-toid arthritis: implications for targeted therapy. Signal Transduct. Target. Ther. 2023; 8:68. https://doi.org/10.1038/s41392-023-01331-9
5. Kwon D.Y, Gu J.H, Oh M., Lee E-J. Combination effects of herbal and western medi-cines on osteoporosis in rheumatoid arthritis: systematic review and meta-analysis. Front. Pharmacol. 2023; 14: 1164898. https://doi.org/10.3389/fphar.2023.1164898
6. Zverev Ya.F., Rykunova A.Ya. Pharmacology of flavonoids. Barnaul, 2023, 178 p. ISBN 978-5-600-03709-0. (in Russian)
7. Guardia T., Rotelli A.E., Juarez A.O., Pelzer L.E. Anti-inflammatory properties of plant flavonoids, effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farma-co. 2001; 56 (9): 683-687. https://doi.org/10.1016/s0014-827xMat(01)01111-9
8. Kauss T., Moynet D., Rambert J., Al-Kharrat A., Brajot S., Thiolat D. et al. Rutoside de-creases human macrophage-derived inflammatory mediators and improves clinical signs in adjuvant-induced arthritis. Arthritis Res. Ther. 2008; 10 (1): R19. https://doi.org/10.1186/ar2372
9. Kawaguchi K., Kaneko M., Miyake R., Takimoto H., Kumazawa Y. Potent inhibitory effects of quercetin on inflammatory responses of collagen-induced arthritis in mice. Endocr. Metab. Immune Disord. Drug Tatgets. 2019; 19 (3): 308-315. https://doi.org/10.2174/1871530319666190206225034
10. Yuan K., Zhu Q., Lu Q., Jiang H., Zhu M., Li X. et al. Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J. Nutr. Biochem. 2020; 84: 108454. https://doi.org/10.1016/j.jnutbio.2020.108454
11. Ansari M., Khan N.H.A. Quercetin alleviate oxidative stress and inflammation through upregulation of antioxidant machinery and down-regulation of COX2 and NF-κB ex-pression in collagen induced rheumatoid arthritis. Int. J. Drug Dev. Res. 2014; 6 (1): 215-232
12. Yang Y., Zhang X., Xu M., Wu X., Zhao F., Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of heme oxygenase 1-mediated anti-inflammatory effect. Int. Immunopharmacol. 2018; 54: 153-162. https://doi.org/10.1016/j.intimp.2017.11.013
13. Guazelli C.F.S., Staurengo-Ferrari L., Zarpelon A.C., Pinho-Ribeiro F.A., Ruiz-Miyazawa K.W, Vicentini F.T.M.C. et al. Quercetin attenuates zymosan-induced arthri-tis in mice. Biomed. Pharmacother. 2018; 102: 175-184. https://doi.org/10.1016/j.biopha.2018.03.057
14. Haleagrahara N., Hodgson K., Miranda-Hernandez S., Hughes S., Kulur A.B., Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018; 26 (5): 1219-1232. https://doi.org/10.1007/s10787-018-0464-2
15. Shen P., Lin W., Ba X., Huang Y., Chen Z., Han L. et al. Quercetin-mediated SIRT1 ac-tivation attenuates collagen-induced mice arthritis. J. Ethnopharmacol. 2021; 279: 114213. https://doi.org/10.1016/j.jep.2021.114213
16. Liu X., Tao T., Yao H., Zheng H., Wang F., Gao Y. Mechanism of action of quercetin in rheumatoid arthritis models: meta-analysis and systematic review of animal studies. In-flammopharmacology. 2023; 31 (4): 1629-1645. https://doi.org/10.1007/s10787-023-01196-γ
17. Shao Y-R., Xu D-Y., Lin J. Nutrients and rheumatoid arthritis: from the perspective of neutrophils. Front. Immunol. 2023; 14: 1113607. https://doi.org/10.3389/fimmu.2023.1113607
18. Borghi S.M., Mizokami S.S., Pinho-Ribeiro F.A., Fattori V., Crespigio J. The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J. Nutr. Bi-ochem. 2018; 53: 81-95. https://doi.org/10.1016/j.jnutbio.2017.10.010
19. El-Said K.S., Atta A., Mobasher M.A., Germoush M.O., Mohamed T.M., Salem M.M. Quercetin mitigates rheumatoid arthritis by inhibiting adenosine deaminase in rats. Mol. Med. 2022; 28: 24. https://doi.org/10.1186/s10020-022-00432-5
20. Tang M., Zeng Y., Peng W., Xie X., Yang Y., Ji B., Li F. Pharmacological aspects of natural quercetin in rheumatoid arthritis. Drug Des. Devel. Ther. 2022; 16: 2043-2053. https://doi.org/10.2147/DDDT.S3647.59
21. Atta A., Salem M.M., El-Said K.S., Mohamed T.M. Mechanistic role of quercetin as in-hibitor for adenosine deaminase enzyme in rheumatoid arthritis: systematic review. Cell. Mol. Biol. Let. 2024; 29 (1): 14. https://doi.org/10.1186/s11658-024-00531-7
22. Zhao J., Chen B., Peng X., Wang K., Han F., Xu J. Quercetin suppresses migration and invasion by targeting miR-146a/GATA6 axis in fibroblast-like synoviocytes of rheuma-toid arthritis. Immunopharmacol. Immunotoxicol. 2020; 42 (3): 2212-2227. https://doi.org/10.1080/08923973.2020.1742732
23. Kim H-R, Kim B-M, Won J-Y, Lee K-A, Ko H.M., Kang Y.S. et al. Quercetin, a plant polyphenol, has potential for the prevention of bone destruction in rheumatoid arthritis. J. Med. Food. 2019; 22 (2): 152-161. https://doi.org/ 10.1089/jmf.2018.4259
24. Saccol R.S.P., da Silveira K.L., Manzoni A.G., Abdalla F.H., de Oliveira J.S. Antioxi-dant, genoprotective, and cytoprotective effects of quercetin in a murine model of ar-thritis. J. Cell. Biochem. 2020; 121 (4): 2792-2801. https://doi.org/10.1002/jcb.29502
25. Endale M., Park S-C., Kim S., Kim S-H., Yang Y., Cho J.Y., Rhee M.H. Quercetin dis-rupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology. 2013; 218 (12): 1452-1467. https://doi.org/10.1016/j.imbio.2013.04.019
26. Zhang L., Zhang Y., Zhong W., Di C., Lin X., Xia Z. Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell bal-ance. J. Biol. Chem. 2014; 289 (39): 26847-26858. https://doi.org/10.1074/jbc hepato-protective.M114.590554
27. Haleagrahara N., Miranda-Hernandez S., Alim M.A., Hayes L., Bird G., Ketheesan N. Therapeutic effect of quercetin in collagen-induced arthritis. Biomed. Pharmacother. 2017; 90: 38-46. https://doi.org/10.1016/j.biopha.2017.03.026
28. Haleagrahara N., Hodgson K., Miranda-Hernandez S., Hughes S., Kulur A.B., Ketheesan N. Flavonoid quercetin-methotrexate combination inhibits inflammatory mediators and matrix metalloproteinase expression, providing protection to joints in collagen-induced arthritis. Inflammopharmacology. 2018; 26 (5): 1219-1232. https://doi.org/10.1007/s10787-018-0464-2
29. Ibrachim S.S.A., Kandil L.S., Ragab G.M., El-Sayyad S.M. Micro RNAs 26b, 20a in-versely correlate with GSK-3β/NF-κB/NLRP-3 pathway to highlight the additive prom-ising effects of atorvastatin and quercetin in experimental induced arthritis. Int. Im-munopharmacol. 2021; 99: 108042. https://doi.org/10.1016/j.intimp.2021.108042
30. Zverev Ya.F. Flavonoids through the eyes of a pharmacologist. Features and problems of pharmacokinetics. Reviews on Clinical Pharmacology and Drug Therapy. 2017; 15 (2): 4-11. (In Russian). https://doi.org/10.17816/RCF1524-11
31. Zverev Ya.F., Rykunova A.Ya. Modern nanocarriers as a factor in increasing the bioa-vailability and pharmacological activity of flavonoids. Applied Biochemistry and Mi-crobiology. 2022; 58 (9): 1002-1020. https://doi.org/10.1134/s0003683822090149
32. Han Z., Gao X., Wang Y., Cheng S., Zhong X., Xu Y. et al. Ultrasmall iron-quercetin metal natural product nanocomplex with antioxidant and macrophage regulation in rheumatoid arthritis. Acta Pharmaceutica Sinica B. 2023; 13 (4): 1726-1739. https://doi.org/10.1016/j.apsb.2022.11.020
33. Jeyadevi R., Sivasudha T., Rameshkumar A., Ananth D.A, Aseervatham G.S.B. En-hancement of anti-arthritic effect of quercetin using thioglycolic acid-capped cadmium telluride quantum dots as nanocarrier in adjuvant induced arthritic Wistar rats. Colloids Surf. B Biointerfaces. 2013; 112: 255-263. https://doi.org/10.1016/j.colsurfb.2013.07.065
34. Li X., Wang X., Qu X., Shi N., Li Q., Yan Z. et al. Microenvironmental enzyme-responsive methotrexate modified quercetin micelles for the treatment of rheumatoid arthritis. Int. J. Nanomedicine. 2024; 19: 3259-3273. https://doi.org/10.2147/IJN.S457004
35. Souza K.S., Moreira L.S., Silva B.T., Oliveira B.P.M., Carvalho A.S., Silva P.S. et al. Low dose of quercetin-loaded pectin/casein microparticles reduces the oxidative stress in arthritic rats. Life Sci. 2021; 284:119910. https://doi.org/10.1016/j.lfs.2021.119910
36. Hannan A, Akhtar B, Sharif A, Anjum F, Pasha I., Khan A. et al. Quercetin-loaded chi-tosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammophar-macology. 2023; 31: 287-300. https://doi.org/10.1007/s10787-022-01118-4
37. Yoon H-y., Lee E-G., Lee H., Cho I.J., Choi Y.J., Sung M-S. et al. Kaempferol inhibits IL-1β-induced proliferation of rheumatoid arthritis synovial fibroblasts and the produc-tion of COX-2, PGE2 and MMPs. Int. J. Mol. Med. 2013; 32 (4): 971-977. https://doi.org/10.3892/ijmm.2013.1468
38. Pan D., Li N., Liu Y., Xu Q., Liu Q., You Y. et al. Kaempferol inhibits the migration and invasion of rheumatoid arthritis fibroblast-like synoviocytes by blocking activation of the MAPK pathway. Int. Immunopharmacol. 2018; 55: 174-182. https://doi.org/10.1016/j.intimp.2017.12.011
39. Lee C-J., Moon S-J., Jeong J-H., Lee S., Lee M-H., Yoo S-M. et al. Kaempferol target-ing on the fibroblast growth factor receptor 3-ribosomal S6 kinase 2 signaling axis pre-vents the development of rheumatoid arthritis. Cell. Death Dis. 2018; 9 (3): 401. https://doi.org/10.1038/s41419-018-0433-0
40. Luo H., Zhang R. Icariin enhances cell survival in lipopolysaccharide-induced synovio-cytes by suppressing ferroptosis via the xc-/GPX4 axis. Exp. Ther. Med. 2021; 21: 72. https://doi.org/10.3892/etm.2020.9504
41. Wu Z.M., Luo J., Shi X.D., Zhang S.X., Zhu X.B., Guo J. Icariin alleviates rheumatoid arthritis via regulating miR-223-3p/NLRP3 signalling axis. Autoimmunity. 2020; 53 (8): 450-458. https://doi.org/10.1080/08916934.2020.1836488
42. Hughes S.D., Ketheesan N., Haleagrahara N. The therapeutic potential of plant flavo-noids on rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2017; 57 (17): 3601-3613. https://doi.org/10.1080/10408398.2016.1246413
43. Lee J.D., Huh J.E., Jeon G., Yang H.R., Woo H.S., Choi D-Y., Park D-S. Flavonol-rich RVHxR from Rhus verniciflua Stokes and its major compound fisetin inhibits inflam-mation-related cytokines and angiogenic factor in rheumatoid arthritis fibroblast-like synovial cells and in vivo models. Int. Immunopharmacol. 2009; 9 (3): 268-276. https://doi.org/10.1016/j.intimp.2008.11.005
44. Fu Q., Gao Y., Zhao H., Wang Z., Wang J. Galangin protects human rheumatoid arthritis fibroblast-like synoviocytes via suppression of the NF-κB/NLRP3 pathway. Mol. Med. Rep. 2018; 18 (4): 3619-3624. https://doi.org/10.3892/mmr.2018.9422
45. Liu X-R., Li S-F., Mei W-Y., Liu X-D., Zhou R-B. Isorhamnetin downregulates MMP2 and MMP9 to inhibit development of rheumatoid arthritis through SRC/ERK/CREB pathway. Chin. J. Integr. Med. 2024; 30 (4): 299-310. https://doi.org/10.1007/s11655-023-3753-6
46. Chakraborty D., Gupta K., Biswas S. A mechanistic insight of phytoestrogens used for rheumatoid arthritis: on evidence-based review. Biomed. Pharmakother. 2021; 133: 111039. https://doi.org/10.1016/j.biopha.2020.111039
47. Cao D., Fan Q., Li Z., Chen M., Jiang Y., Lin R. et al. Transcriptomic profiling revealed the role of apigenin-4’-O-α-L-rhamnoside in inhibiting the activation of rheumatoid ar-thritis fibroblast-like synoviocytes via MAPK signaling pathway. Phytomedicine. 2022; 102: 154201. https://doi.org/10.1016/j.phymed.2022.154201
48. Xiao B., Li J., Qiao Z., Yang S., Kwan H-Y., Jiang T. et al. Therapeutic effects of Sieg-esbeckia orientalis L. and its active compound luteolin in rheumatoid arthritis: network pharmacology, molecular docking and experimental validation. J. Ethnopharmacol. 2023; 317: 116852. https://doi.org/10.1016/j.jep.2023.116852
49. Dinda B., Dinda S., DasSharma S., Banik R., Chakraborty A., Dinda M. Therapeutic po-tentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem. 2017; 131: 68-80. https://doi.org/10.1016/j.ejmech.2017.03.004
50. Zhang X., Guan X., Piao Y., Che X., Si M., Jin J. Baicalein induces apoptosis of rheuma-toid arthritis synovial fibroblasts through inactivation of the PI3K/Akt/mTOR pathway. Evid. Based Complement. Alternat. Med. 2022; 2022: 3643265. https://doi.org/10.1155/2022/3643265
51. Yang J., Yang Y., Chu Y., Li M. Identification of baicalin as an immunoregulatory com-pound by controlling TH17 cell differentiation. PLoS One. 2011; 6 (2): e17164. https://doi.org/10.1371/journal.pone.0017164
52. Yang X., Yang J., Zou H. Baicalin inhibits IL-17-mediated joint inflammation in murine adjuvant-induced arthritis. Clin. Dev. Immunol. 2013; 2013: 268065. https://doi.org/10.1155/2013/268065
53. Wang C., Song Y., Wang X., Mao R., Song L. Baicalin ameliorates collagen-induced ar-thritis through the suppression of Janus kinase 1 (JAK1)/signal transducer and activator of transcription 3 (STAT3) signaling in mice. Med. Sci. Monit. 2018; 24: 9213-9222. https://doi.org/10.12659/MSM.910347
54. Sun F., Gu W. Baicalin attenuates collagen-induced arthritis via inhibition of JAK2-STAT3 signaling and regulation of Th17 cells in mice. J. Cell. Commun. Signal. 2019; 13 (1): 65-73. https://doi.org/10.1007/s12079-018-0475-1
55. Bai L., Bai Y., Yang Y., Zhang W., Huang L., Ma R. et al. Baicalin alleviates collagen-induced arthritis and suppresses TLR2/MYD88/NF-κB p65 signaling in rats and HELS-RAs. Mol. Med. Rep. 2020; 22 (4): 2833-2841. https://doi.org/10.3892/mmr.2020.11369
56. Chen X., Wang Y., Cai J., Wang S., Cheng Z., Zhang Z., Zhang C. Anti-inflammatory effect of baicalin in rats with adjuvant arthritis and its autophagy-related mechanism. Technol. Health Care. 2022; 30 (S1): 191-200. https://doi.org/10.3233/THC-228018
57. Wang X-H., Dai C., Wang J., Liu R., Li L., Yin Z-S. Therapeutic effect of neohesperidin of TNF-α-stimulated human rheumatoid arthritis fibroblast-like synoviocytes. Chin. J. Nat. Med. 2021; 19 (10): 741-749. https://doi.org/10.1016/S1875-5364(21)60107-3
58. Qi W., Lin C., Fan K., Chen Z., Liu L., Feng X. et al. Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT path-way in complete Freund’s adjuvant-induced arthritis in mice. Chem. Biol. Interact. 2019; 306: 19-28. https://doi.org/10.1016/j.cbi.2019.04.002
59. Li R., Li J., Cai L., Hu C-m., Zhang L. Suppression of adjuvant arthritis by hesperidin in rats and its mechanisms. JPP. 2008; 60 (2): 221-228. https://doi.org/10.1211/jpp.60.2.0011
60. Adefegha S.A., Bottari N.B., Leal D.B., de Andrade C.M., Scheitinger M.R. Interferon gamma/interleukin-4 modulation, anti-inflammatory and antioxidant effects of hesperi-din in complete Freund’s adjuvant (CFA)-induced arthritis model of rats. Immunophar-macol. Immunotoxicol. 2020; 42 (5): 509-520. https://doi.org/10.1080/08923973.1814806
61. Umar S., Kumar A., Sajad M., Zargan J., Ansari M., Ahmad S. et al. Hesperidin inhibits collagen-induced arthritis possibly through suppression of free radical load and reduc-tion in neutrophil activation and infiltration. Rheumatol. Int. 2012; 33 (3): 657-663. https://doi.org/10.1007/s00296-012-2430-4
62. Zhang G., Sun G., Guan H., Li M., Liu Y., Tian B. et al. Naringenin nanocrystals for im-proving anti-rheumatoid arthritis activity. Asian J. Pharm. Sci. 2021; 16 (6): 816-825. https://doi.org/10.1016/j.ajps.2021.09.001
63. Aihaiti Y., Cai Y.S., Tuerhong X., Yang Y.N., Ma Y., Zheng H.S. et al. Therapeutic ef-fects of naringin in rheumatoid arthritis: network pharmacology and experimental vali-dation. Front. Pharmacol. 2021; 12: 672054. https://doi.org/10.3389/fphar.2021.672054
64. Bussmann A.J.C., Borghi S.M., Zaninelli T.H., Dos Santos T.S., Guazelli C.F.S., Fattori V. et al. The citrus flavanone naringenin attenuates zymosan-induced mouse joint in-flammation: induction of Nrf2 expression in recruited CD45 hematopoietic cells. In-flammopharmacology. 2019; 27 (6): 1229-1242. https://doi.org/10.1007/s10787-018-00561-6
65. Jiang Y-P., Wen J-J., Zhao X-X., Gao Y-C., Ma X., Song S-Y. et al. The flavonoid naringenin alleviates collagen-induced arthritis through curbing the migration and po-larization of CD4+T lymphocyte driven by regulating mitochondrial fission. Int. J. Mol. Sci. 2023; 24: 279. https://doi.org/10.3390/ijms24010279
66. Xie X., Fu J., Gou W., Qin Y., Wang D., Huang Z. et al. Potential mechanism of tea for treating osteoporosis, osteoarthritis, and rheumatoid arthritis. Front. Med. 2024; 11: 1289777. https://doi.org/10.3389/fmed.2024.1289777
67. Ahmed S. Green tea polyphenol epigallocatechin 3-gallate in arthritis: progress and promise. Athritis Res. Ther. 2010; 12 (2): 208. https://doi.org/10.1186/ar2982
68. Kciuk M., Garg A., Rohilla R., Dhankhar S., Dhiman S., Dhiman S. et al. Therapeutic potential of plant-derived compounds and plant extracts in rheumatoid arthritis-comprehensive review. Antioxidants (Basel). 2024; 13 (7): 775. https://doi.org/10.3390/antiox13070775
69. Singh A.K., Umar S., Riegsecker S., Chourasia M., Ahmed S. Regulation of transform-ing growth factor β-activated kinase activation by epigallocatechin-3-gallate in rheuma-toid arthritis synovial fibroblasts: suppression of K(63)-linked autoubiquitination of tumor necrosis factor receptor-associated factor 6. Arthritis Rheumatol. 2016; 68 (2): 347-358. https://doi.org/10.1002/art.39447
70. Sivasakthi P., Priya E.S., Selvan P.S. Molecular insights into phytochemicals exhibiting anti-arthritic activity: systematic review: John Di Battista. Inflamm. Res. 2021; 70 (6): 665-685. https://doi.org/10.1007/s00011-021-01471-0
71. Liu X., Wang Z., Qian H., Tao W., Zhang Y., Hu C. et al. Natural medicines of targeted rheumatoid arthritis and its action mechanism. Front Immunol. 2022; 13: 945129. https://doi.org/10.3389/fimmu.2022.945129
72. Roy S., Sannigrahi S., Vaddepalli R., Ghosh B., Pusp P. A novel combination of metho-trexate and epigallocatechin attenuates the overexpression of pro-inflammatory carti-lage cytokines and modulates antioxidant status in adjuvant arthritic rats. Inflammation. 2012; 35 (4): 1435-1447. https://doi.org/10.1007/s10753-012-9457-2
73. Roy S., Sannigrahi S., Ghosh B., Pusp P., Roy T. Combination therapy of dexame-thasone with epigallocatechin enhances tibiotarsal bone articulation and modulates oxi-dative status correlates with cartilage cytokines expression in the early phase of experi-mental arthritis. Eur. J. Pharmacol. 2013; 698 (1-3): 444-454. https://doi.org/10.1016/j.ejphar.2012.11.004
74. Li J., Li J., Yue Y., Hu Y., Cheng W., Liu R. et al. Genistein suppresses tumor necrosis factor α-induced inflammation via modulating reactive oxygen species/Akt/nuclear fac-tor κB and adenosine monophosphate-activated protein linase signal pathways in human synoviocyte MH7A cells. Drug Des. Devel. Ther. 2014; 8: 315-323. https://doi.org/10.2147/DDDT.S52354
75. Zhang Y., Dong J., He P., Li W., Zhang Q., Li N., Sun T. Genistein inhibit cytokines or growth factor-induced proliferation and transformation phenotype in fibroblast-like synoviocytes of rheumatoid arthritis. Inflammation. 2012; 35 (1): 377-387. https://doi.org/10.1007/s10753-011-9365-x
76. Ramesh P., Jagadeesan R., Sekaran S., Dhanasekaran A., Vimalraj S. Flavonoids: classi-fication, function, and molecular mechanisms involved in bone remodelling. Front. En-docrinol (Lausanne). 2021; 12: 779638. https://doi.org/10.3389/fendo.2021.779638
77. Erdayandi G.E., Yilmaz O., Kerimoglu G., Sahin E., Dogan S.Y. Can intra-articular dai-dzein injection reduce oxidative damage and early osteoarthritis in a rabbit temporo-mandibular joint model? BMC Oral Health. 2024; 24 (1): 1193. https://doi.org/10.1186/s12903-024-04990-4
78. Ahmad S., Alam K., Hossain M.M., Fatima M., Firdaus F., Zafeer M.F. et al. Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol. Cell. Biochem. 2016; 423 (1-2): 115-127. https://doi.org/10.1007/s11010-016-2830-γ
79. Isik A., Koca S.S., Ustundag B., Celik H., Yildirim A. Paraxonase and arylesterase lev-els in rheumatoid arthritis. Clin. Rheumatol. 2007; 26: 342-348. https://doi.org/10.2147/s10067-006-0300-8
Опубликован
27-10-2025
Как цитировать
Зверев Я. Ф., Рыкунова А. Я. Применение флавоноидов в экспериментальной терапии ревматоидного артрита // Патологическая физиология и экспериментальная терапия. 2025. Т. 69. № 4. С. 182–195.
Раздел
Обзоры