Экспериментальные модели печеночно-клеточной недостаточности на основе изолированного и комбинированного действия этиологических факторов
Аннотация
Заболевания печени продолжают оставаться одной из ведущих причин смертности среди хронических патологий во всем мире. Особая сложность в лечении возникает из-за наличия у пациентов нескольких этиологических факторов, которые приводят к формированию сочетанных поражений печени. В связи с этим возрастает потребность в создании экспериментальных моделей, имитирующих данную клиническую ситуацию. Такие модели позволяют воспроизводить комбинированные метаболические, токсические и инфекционные воздействия в условиях, максимально приближенных к клинической практике. В данной статье представлен обзор существующих экспериментальных моделей сочетанных поражений печени, а также изолированных форм, которые служат основой для изучения патогенеза и разработки эффективных терапевтических стратегий.
Скачивания
Литература
2. Devarbhavi H., Asrani S.K., Arab J.P., et al. Global burden of liver disease: 2023 update. J Hepatol. 2023;79(2):516-537. doi: 10.1016/j.jhep.2023.03.017.
3. Cheemerla S., Balakrishnan M. Global Epidemiology of Chronic Liver Disease. Clin Liver Dis (Hoboken). 2021;4;17(5):365-370. doi: 10.1002/cld.1061.
4. Сандлер Ю.Г., Винницкая Е.В., Гендриксон Л.Н., и др. Аутоиммунный гепатит: как избежать ошибки? Доктор.Ру. 2017;2(131):15–21
5. Altamirano J., Miquel R., Katoonizadeh A., et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 2014;146(5):1231–1239. doi: 10.1053/j.gastro.2014.01.018.
6. Thompson W.L., Takebe T. Human liver model systems in a dish. Dev Growth Differ. 2021;63(1):47-58. doi: 10.1111/dgd.12708.
7. Крылов Д. П., Родимова С. А., Карабут М. М., Кузнецова Д. С. Экспериментальные модели для изучения структурно-функционального состояния патологической печени (обзор). Современные технологии в медицине 2023;15(4):65. doi: 10.17691/stm2023.15.4.06.
8. Akhtar A. The flaws and human harms of animal experimentation. Camb Q Healthc Ethics 2015;24(4):407–419. doi: 10.1017/s0963180115000079.
9. Мазеркина И.А. Оценка лекарственной гепатотоксичности in vitro на клеточных моделях (обзор). Безопасность и риск фармакотерапии. 2023;11(2):131-144. doi: 10.30895/2312-7821-2023-11-2-351.
10. Aoudjehane L., Gautheron J., Goff W.L., et al. Novel Defatting Strategies Reduce Lipid Accumulation in Primary Human Culture Models of Liver Steatosis. Dis. Model. Mech. 2020;13 doi: 10.1242/dmm.042663.
11. Gómez-Lechón M.J., Donato M.T., Castell J.V., Jover R. Human Hepatocytes as a Tool for Studying Toxicity and Drug Metabolism. Curr. Drug Metab. 2003;4:292–312. doi: 10.2174/1389200033489424.
12. Wilkening S., Stahl F., Bader A. Comparison of Primary Human Hepatocytes and Hepatoma Cell Line Hepg2 with Regard to Their Biotransformation Properties. Drug Metab. Dispos. 2003;31:1035–1042. doi: 10.1124/dmd.31.8.1035.
13. Zeilinger K., Freyer N., Damm G., et al. Cell Sources for in Vitro Human Liver Cell Culture Models. Exp. Biol. Med. 2016;241:1684–1698. doi: 10.1177/1535370216657448.
14. Segovia-Zafra A., Di Zeo-Sánchez D.E., López-Gómez C., et al. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): moving towards prediction. Acta Pharm Sin B. 2021;11(12):3685–726. doi: 10.1016/j.apsb.2021.11.013.
15. Sison-Young R.L., Mitsa D., Jenkins R.E., at al. Comparative Proteomic Characterization of 4 Human Liver-Derived Single Cell Culture Models Reveals Significant Variation in the Capacity for Drug Disposition, Bioactivation, and Detoxication. Toxicological Sciences. 2015;147(2):412-24. doi: 10.1093/toxsci/kfv136.
16. Hu C., Li L. In Vitro Culture of Isolated Primary Hepatocytes and Stem Cell-Derived Hepatocyte-like Cells for Liver Regeneration. Protein Cell. 2015;6:562–574. doi: 10.1007/s13238-015-0180-2
17. Imagawa K., Takayama K., Isoyama S., et al. Generation of a bile salt export pump deficiency model using patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Sci Rep. 2017;7:41806. doi: 10.1038/srep41806.
18. Polli J.E. In vitro studies are sometimes better than conventional human pharmacokinetic in vivo studies in assessing bioequivalence of immediate-release solid oral dosage forms. AAPS J 2008;10(2): 289–299. doi: 10.1208/s12248-008-9027-6.
19. Gamboa J.M., Leong K.W. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;15;65(6):800-10. doi: 10.1016/j.addr.2013.01.003.
20. Mackowiak B., Fu Y., Maccioni L., Gao B. Alcohol-associated liver disease. J Clin Invest. 2024;1;134(3):176345. doi: 10.1172/JCI176345.
21. Rastovic U., Bozzano S.F., Riva A., at al. Human Precision-Cut Liver Slices: A Potential Platform to Study Alcohol-Related Liver Disease. Int J Mol Sci. 2023;21;25(1):150. doi: 10.3390/ijms25010150.
22. Bertola A., Mathews S., Ki S.H., at al. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 2013;8(3):627–637. doi: 10.1038/nprot.2013.032.
23. Khanova E., Wu R., Wang W., et al. Pyroptosis by caspase11/4-gasdermin-D pathway in alcoholic hepatitis in mice and patients. Hepatology 2018;67(5):1737–1753. doi: 10.1002/hep.29645.
24. Tsukamoto H., French S.W., Rektelberger R.D., Largman C. Cyclical pattern of blood alcohol levels during continuous intragastric ethanol infusion in rats. Alcohol Clin Exp Res 1985;9(1): 31–37. doi: 10.1111/j.1530-0277.1985.tb05046.
25. Nawroth J.C., Petropolis D.B., Manatakis D.V., et al. Modeling Alcohol-Associated Liver Disease in a Human Liver-Chip. Cell Rep. 2021;36(3):109393. doi: 10.1016/j.celrep.2021.109393.
26. Dewyse L., Reynaert H., van Grunsven L.A. Best Practices and Progress in Precision-Cut Liver Slice Cultures. Int J Mol Sci. 2021;22(13):7137. doi: 10.3390/ijms22137137.
27. de Graaf I.A., Olinga P., de Jager M.H., et al. Preparation and incubation of precision-cut liver and intestinal slices for application in drug metabolism and toxicity studies. Nat Protoc. 2010;5(9):1540-51. doi: 10.1038/nprot.2010.111.
28. Thandra K.C., Barsouk A., Saginala K., et al. Epidemiology of non-alcoholic fatty liver disease and risk of hepatocellular carcinoma progression. Clin Exp Hepatol. 2020;6(4):289-294. doi: 10.5114/ceh.2020.102153.
29. Basaranoglu M., Neuschwander-Tetri B.A. Nonalcoholic Fatty Liver Disease: Clinical Features and Pathogenesis. Gastroenterol Hepatol (N Y). 2006;2(4):282-291.
30. Hansen B.C., Liang Z., Sun F., et al. Nonalcoholic fatty liver disease (NAFLD) in obese rhesus monkeys provides the first animal model that accurately reflects the human condition. FASEB J 2017;31(S1):895.6–895.6. doi: 10.1096/fasebj.31.1_supplement.895.6.
31. Cao L., Xu E., Zheng R., et al. Traditional Chinese medicine Lingguizhugan decoction ameliorate HFD-induced hepatic-lipid deposition in mice by inhibiting STING-mediated inflammation in macrophages. Chin Med. 2022;17(1):7. doi: 10.1186/s13020-021-00559-3.
32. Fang T., Wang H., Pan X., et al. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies. Int J Biol Sci. 2022;18(15):5681-5697. doi: 10.7150/ijbs.65044.
33. Ishimoto T., Lanaspa M.A., Rivard C.J., et al. High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology. 2013;58(5):1632-43. doi: 10.1002/hep.26594.
34. Lefere S., Puengel T., Hundertmark J., et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J Hepatol. 2020;73(4):757-770. doi: 10.1016/j.jhep.2020.04.025.
35. Du Y., Broering R., Li X., et al. In Vivo Mouse Models for Hepatitis B Virus Infection and Their Application. Front Immunol. 2021;12:766534. doi: 10.3389/fimmu.2021.766534.
36. Dong R., Zhang B., Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci. 2022;12(1):152. doi: 10.1186/s13578-022-00890-8.
37. Xu R., Hu P., Li Y., et al. Advances in HBV infection and replication systems in vitro. Virol J. 2021;18(1):105. doi: 10.1186/s12985-021-01580-6.
38. De Crignis E., Hossain T., Romal S., et al. Application of human liver organoids as a patient-derived primary model for HBV infection and related hepatocellular carcinoma. Elife. 2021;10:e60747. doi: 10.7554/eLife.60747.
39. Feng F., Zhao Y. Hepatocellular Carcinoma: Prevention, Diagnosis, and Treatment. Med Princ Pract. 2024;33(5):414-423. doi: 10.1159/000539349.
40. Sundi P.R.I.O., Thipe V.C., Omar M.A., et al. Preclinical human and murine models of hepatocellular carcinoma (HCC). Clin Res Hepatol Gastroenterol. 2024;48(7):102418. doi: 10.1016/j.clinre.2024.102418.
41. Li G., Liu D., Cooper T.K., et al. Successful chemoimmunotherapy against hepatocellular cancer in a novel murine model. J Hepatol. 2017;66(1):75-85. doi: 10.1016/j.jhep.2016.07.044.
42. Blidisel A., Marcovici I., Coricovac D., et al. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel). 2021;13(15):3651. doi: 10.3390/cancers13153651.
43. Asrani S.K., Devarbhavi H., Eaton J., Kamath P.S. Burden of liver diseases in the world. J Hepatol. 2019;70:151–171. doi: 10.1016/j.jhep.2018.09.014.
44. Kalligeros M., Vassilopoulos A., Vassilopoulos S., et al. Prevalence of Steatotic Liver Disease (MASLD, MetALD, and ALD) in the United States: NHANES 2017-2020. Clin Gastroenterol Hepatol. 2024;22(6):1330-1332.e4. doi: 10.1016/j.cgh.2023.11.003.
45. Buyco D.G., Martin J., Jeon S., et al. Experimental models of metabolic and alcoholic fatty liver disease. World J Gastroenterol. 2021;27(1):1-18. doi: 10.3748/wjg.v27.i1.1.
46. Genchi V.A., Cignarelli A., Sansone A., et al. Understanding the Role of Alcohol in Metabolic Dysfunction and Male Infertility. Metabolites. 2024;14(11):626. doi: 10.3390/metabo14110626.
47. Hwang S., Ren T., Gao B. Obesity and binge alcohol intake are deadly combination to induce steatohepatitis: A model of high-fat diet and binge ethanol intake. Clin Mol Hepatol. 2020;26(4):586-594. doi: 10.3350/cmh.2020.0100.
48. Cao P., Chao X., Ni H.M., Ding W.X. An Update on Animal Models of Alcohol-Associated Liver Disease. Am J Pathol. 2025;S0002-9440(25):00032-X. doi: 10.1016/j.ajpath.2024.11.011.
49. Schonfeld M., O'Neil M., Villar M.T., et al. A Western diet with alcohol in drinking water recapitulates features of alcohol-associated liver disease in mice. Alcohol Clin Exp Res. 2021;45(10):1980-1993. doi: 10.1111/acer.14700.
50. Benedé-Ubieto R., Estévez-Vázquez O., Guo F., et al. An Experimental DUAL Model of Advanced Liver Damage. Hepatol Commun. 2021;5(6):1051-1068. doi: 10.1002/hep4.1698.
51. Correnti J., Lin C., Brettschneider J., et al. Liver-specific ceramide reduction alleviates steatosis and insulin resistance in alcohol-fed mice. Journal of Lipid Research. 2020;61(7):983-994. doi: 10.1194/jlr.ra119000446.
52. Wang Y., Seitz H.K., Wang X.D.. Moderate alcohol consumption aggravates high-fat diet induced steatohepatitis in rats. Alcohol Clin Exp Res. 2010;34:567–573. doi: 10.1111/j.1530-0277.2009.01122.x.
53. Sengupta M., Abuirqeba S., Kameric A., et al. A two-hit model of alcoholic liver disease that exhibits rapid, severe fibrosis. PLoS One. 2021;16(3):e0249316. doi: 10.1371/journal.pone.0249316.
54. Chang B., Xu M.J., Zhou Z., et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology. 2015;62(4):1070-85. doi: 10.1002/hep.27921
55. Suriano F., Vieira-Silva S., Falony G., et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin. Microbiome. 2021;9(1):147. doi: 10.1186/s40168-021-01097-8.
56. Buyco D.G., Martin J., Jeon S., et al. Experimental models of metabolic and alcoholic fatty liver disease. World J Gastroenterol. 2021;27(1):1-18. doi: 10.3748/wjg.v27.i1.1.
57. Everitt H., Hu M., Ajmo J.M., et al. Ethanol administration exacerbates the abnormalities in hepatic lipid oxidation in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 2013;304:38–47. doi: 10.1152/ajpgi.00309.2012.
58. Carmiel-Haggai M., Cederbaum A.I., Nieto N. Binge ethanol exposure increases liver injury in obese rats. Gastroenterology. 2003;125:1818–1833. doi: 10.1053/j.gastro.2003.09.019
59. Hosack T., Damry D., Biswas S. Drug-induced liver injury: a comprehensive review. Therap Adv Gastroenterol. 2023;16:17562848231163410. doi: 10.1177/17562848231163410.
60. Liu H., Yin G., Kohlhepp M.S., et al. Dissecting Acute Drug-Induced Hepatotoxicity and Therapeutic Responses of Steatotic Liver Disease Using Primary Mouse Liver and Blood Cells in a Liver-On-A-Chip Model. Adv Sci (Weinh). 2024;11(30):2403516. doi: 10.1002/advs.202403516.








