© Коллектив авторов, 2021 УДК 616-092

Капица И.Г., Алымов А.А., Воронина Т.А., Середенин С.Б.

Влияние афобазола на изменения в раннем постнатальном периоде у мышей линии BALB/с с фетальным вальпроатным синдромом

ФГБНУ «НИИ фармакологии им. В.В. Закусова», Россия, 125315, Москва, Россия, ул. Балтийская, д. 8

Введение. Воздействие вальпроевой кислотой во время беременности у грызунов широко используется для моделирования расстройств аутистического спектра (РАС).

Цель исследования – изучение ранних поведенческих изменений у мышей BALB/с, пренатально подвергшихся однократному воздействию натриевой соли вальпроевой кислоты (400 мг/кг), и возможности их коррекции афобазолом.

Методика. Объект исследования – мыши линии BALB/с с фетальным вальпроат-синдромом (ФВС), которым с 7-х по 14-е сут постнатального развития перорально ежедневно вводили афобазол (10 мг/кг) или 0,9% раствор хлорида натрия. Контрольная группа получала 0,9% раствор хлорида натрия в эквивалентном объеме (0,1 мл на 10 г массы). Состояние мышат изучали с 6-х по 14-е сут постнатального развития, оценивали их физическое развитие, скорость созревания сенсорнодвигательных рефлексов, эмоционально-двигательное поведение и точную координацию движений при помощи батареи «развитийных» тестов.

Результаты. Введение самкам мышей на 13-й день беременности вальпроевой кислоты приводило к отставанию созревания у потомства сенсорно-двигательных рефлексов, нарушению эмоционально-двигательного поведения и координации движений в гнездовом периоде. Афобазол, при введении 10 мг/кг перорально ежедневно, начиная с 7-х сут постнатального развития мышам с ФВС, корригировал отмеченные нарушения в тестах, отражающих нарушения развития нервной системы. **Заключение.** Установлены корригирующие свойства афобазола в отношении нарушений, вызванных пренатальным введением ВПК, что определяет целесообразность дальнейшего изучения афобазола на моделях РАС.

Ключевые слова: расстройства аутистического спектра (РАС); фетальный вальпроатный синдром (ФВС); мыши линии BALB/c; раннее постнатальное развитие; афобазол

Для цитирования: Капица И.Г., Алымов А.А., Воронина Т.А., Середенин С.Б. Влияние афобазола на изменения в раннем постнатальном периоде у мышей линии BALB/с с фетальным вальпроатным синдромом. *Патологическая физиология и экспериментальная терапия*. 2021; 65(1): 12-21.

DOI: 10.25557/0031-2991.2021.01.12-21

Участие авторов: концепция и дизайн исследования – Капица И.Г., Воронина Т.А., Середенин С.Б.; сбор и обработка материала, подготовка иллюстративного материала, статистическая обработка, написание текста – Алымов А.А., Капица И.Г.; редактирование – Капица И.Г., Воронина Т.А., Середенин С.Б.

Для корреспонденции: Капица Инга Геннадиевна, e-mail: ingakap73@mail.ru

Финансирование. Работа выполнена в рамках Государственного задания по теме № 0521-2019-0007.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила 18.08.2020 Принята к печати 21.01.2021 Опубликована 10.03.2021

Kapitsa I.G., Alymov A.A., Voronina T.A., Seredenin S.B.

Effect of afobazole on early postnatal changes in BALB/c mice with fetal valproate syndrome

V.V. Zakusov Institute of Pharmacology, Baltiyskaya Str. 8, Moscow 125315, Russia

Introduction. Exposure of rodents to valproic acid during pregnancy is associated with increased incidence of autism spectrum disorders, and has been extensively used as an appropriate model of autism.

Aim. To study early behavioral changes in BALB/c mice prenatally exposed to a single dose of valproic acid sodium salt (400 mg/kg) and a possibility of correcting these changes with afobazole.

Methods. The study was performed on BALB/c mice with fetal valproate syndrome (FVS). The mice were daily injected orally afobazole 10 mg/kg or 0.9% sodium chloride from day 7 to day 14 of the postnatal development. The control group was injected

with an equivalent volume (0.1 ml per 10 g body weight) of 0.9% sodium chloride. The condition of mice was studied from day 6 to day 14 of the postnatal development with evaluation of their physical development, maturation rate of sensory-motor reflexes, emotional-motor behavior, and precise coordination using a battery of «developmental» tests.

Results. Administration of valproic acid to female mice on the 13th day of pregnancy led to delayed maturation of the offspring's sensory-motor reflexes, impaired emotional-motor behavior and coordination of movements during the nesting period. Afobazole administered to mice with fetal valproate syndrome from day 7 to day 14 of the postnatal development at a dose of 10 mg/kg (daily, orally), corrected the disorders in the tests used for assessing retardation or disruption of nervous system development.

Keywords: autism spectrum disorders; ASD; fetal valproate syndrome; FVS; BALB/c mice; early postnatal phase; afobazole **For citation**: Kapitsa I.G., Alymov A.A., Voronina T.A., Seredenin S.B. Effect of afobazole on early postnatal changes in BALB/c mice with fetal valproate syndrome. *Patologicheskaya Fiziologiya i Eksperimental`naya terapiya.* (*Pathological Physiology and Experimental Therapy, Russian Journal*). 2021; 65(1): 12-21. (in Russian).

Contribution of authors: the concept and design of the study – Kapitsa I.G., Voronina T.A., Seredenin S.B.; collection and processing of material, preparing illustrative material, statistical processing, writing a text – Alymov A.A., Kapitsa I.G.; editing – Kapitsa I.G., Voronina T.A., Seredenin S.B.

For correspondence: *Inga G. Kapitsa*, PhD in Biological Sciences, Leading Reseacher, «Federal State Budgetary Scientific Institution «Zakusov institute of pharmacology», e-mail: ingakap73@mail.ru

Acknowledgment. The study was s carried out within the framework of the State Assignment on topic No. 0521-2019-0007 **Conflict of interest.** The authors declare no conflict of interest.

Information about the authors:

DOI: 10.25557/0031-2991.2021.01.12-21

Kapitsa I.G., https://orcid.org/0000-0003-4487-0991 Alymov A.A., https://orcid.org/0000-0001-7298-5791 Voronina T.A., https://orcid.org/0000-0001-7065-469X Seredenin S.B., https://orcid.org/0000-0003-4482-9331

Received 18.08.2020 Accepted 21.01.2021 Published 10.03.2021

Введение

Расстройства аутистического спектра (РАС) — группа нарушений развития, характеризующаяся дефицитом социального взаимодействия, вербальной и невербальной коммуникаций, стереотипным поведением и ограничением интересов. Проявления заболевания у пациентов с РАС в основном регистрируют начиная с 16-18 месяцев жизни [1], однако уже на ранних стадиях жизни наблюдаются колебания массы тела [2], аномальное развитие мозга [3], нарушения синаптической передачи, гиперактивность нейрональных связей, что приводит к характерным для заболевания поведенческим паттернам [1].

Вальпроевая кислота (ВПК) — противоэпилептическое средство, прием которого при беременности увеличивает риск врожденных пороков развития, задержки когнитивных функций и РАС [4], объединенных в понятие «фетальный вальпроат-синдром» (ФВС) [5]. В настоящее время модель ФВС у грызунов хорошо валидирована и широко используется в патофизиологических и фармакологических исследованиях [6-10]. В качестве объекта исследования при моделировании ФВС используются крысы и мыши разных линий, однако наиболее целесоо-

бразным нам представляется применение отобранных по фенотипу инбредных линий, в особенности мышей, которые демонстрируют социальные дефициты и стереотипное поведение, а также ряд сопряженных с РАС симптомов, относящиеся к моделям идиопатического РАС [11], что позволяет совместить в рамках одной экспериментальной модели факторы, влияющие на развитие РАС: генетические особенности животных и повреждающие факторы окружающей среды. Одним из подобных объектов является линия мышей BALB/с, обладающая фенотипическими поведенческими и нейроанатомическими особенностями, имеющих сходство с проявлениями при РАС у человека [12-14]. Разработанный в «НИИ фармакологии им. В.В. Закусова» анксиолитик афобазол [15], обладающий антиоксидантными, нейропротекторными, цитопротекторными свойствами [16], как было показано нами ранее, является перспективным средством для фармакотерапии РАС [17, 18]. Цель исследования — изучение особенностей нарушений в раннем гнездовом периоде жизни у мышей линии BALB/с с ФВС и возможности их коррекции афобазолом.

Методика

Исследование проведено на 100 мышах линии ВАСВ/с возрастом 6-14 сут, массой 2,0-3,0 г в начале исследования, родительское поколение которых было получено из филиала «Столбовая» ФГБУН «НЦБМТ ФМБА». Мышей содержали в стандартных условиях вивария ФГБНУ «НИИ фармакологии имени В.В. Закусова» при регулируемом световом режиме 12ч/12ч (свет/ темнота) и постоянной температуре (21-23°C) со свободным доступом к воде и гранулированному корму (ГОСТ Р 50258-92) в полипропиленовых клетках с решеткой из цинкохромовой стали, с обеспыленной подстилкой из деревянной стружки в соответствии с приказом M3 РФ №199н от 01.04.2016 г. «Об утверждении правил надлежащей лабораторной практики» и санитарно-эпидемиологическим правилам СП 2.2.1.3218-14 «Санитарно-эпидемиологические требования к устройству, оборудованию и содержанию экспериментальнобиологических клиник (вивариев)», утвержденные 29.08.2014 г. N 51. Проведение экспериментов было одобрено Комиссией по биомедицинской этике ФГБНУ «НИИ фармакологии им. В.В. Закусова».

Для получения «датированной беременности» к 2-3-ем самкам мышей BALB/с, находящимся на стадии проэструса или эструса, определяемым по цитологической картине влагалищного мазка, с 17-и часов вечера до 9-и утра следующего дня, который впоследствии принимали за «0» (E0) день развития плода, подсаживали 1 самца. Оплодотворенных самок содержали по 4-5 особей в одной клетке до появления видимых признаков беременности, после чего размещали в индивидуальные клетки. РАС моделировали путем подкожного введения ВПК в дозе 400 мг/кг самкам мышей BALB/с на 13-й день беременности (E13) [9, 19]. Самкам, из потомства которых формировали группы «пассивного» контроля, в эти же сроки (E13) подкожно вводили 0,9% раствор хлорида натрия в эквивалентном объеме (0,1 мл на 10 г веса). День появления мышат принимали за «0» сутки постнатального развития (Р0). Полученное потомство было разделено на 6 групп: две группы «Контроль» — самцы (n=12) и самки (n=15); две группы «ВПК» — самцы (n=15) и самки (n=24) с фетальным вальпроат-синдромом (Φ BC), рожденные от мышей, которым в период беременности вводили ВПК; и две опытные группы «ВПК+Афобазол» — самцы (n=14) и самки (n=20) с ФВС, которым начиная с Р7 ежедневно вводили афобазол перорально (10 мг/кг). Животные контрольных групп с Р7 перорально получали дистиллированную воду в эквивалентом объеме (0,1 мл на 10 г веса).

Состояние мышат в гнездовом периоде изучали с P6 по P14, оценивая их физическое развитие, скорость созревания сенсорно-двигательных рефлексов, эмоционально-двигательное поведение и точную координацию движений при помощи батареи «развитийных» тестов [19, 20]. Для оценки физического развития мышат ежедневно взвешивали, а с P10 отслеживали их прозревание [7].

Способность поддерживать позу изучали при помощи тестов «переворачивание на плоскости», «избегание наклонной плоскости» и «избегание обрыва». Рефлекс переворачивания на плоскости оценивали в период с Рб по Р10 — мышонка клали на спину и отмечали время, за которое он перевернется на лапы [19]. Максимальное время наблюдения составляло 30 с.

Тест «избегания обрыва» проводили с Р7 по Р10 [20]. Мышь располагали на краю коробки с гладкой поверхностью таким образом, чтобы пальцы передних лап и голова свисали над её краем и в течение 30 с фиксировали латентное время поворота или отползания от края коробки и число животных, выполнивших задачу.

Врожденная постуральная реакция грызунов на поворот на 180° из положения «головой вниз» в положение «головой вверх» на наклонной плоскости появляется у здоровых мышат уже на второй неделе жизни и считается тестом золотого стандарта для оценки рефлекторного развития, моторики, вестибулярного лабиринта и целостности мозжечка [21]. Тест «отрицательный геотаксис» проводили с P7 по P12 [19]. Мышь помещали на наклонную под 45° сетку длиной 30 см, головой по направлению со склона, и в течение 30 с фиксировали время поворота животного в направлении вверх по склону.

Тест «переворот в воздухе», отражающий степень созревания подкорковых структур, проводили с P10 по P14 [22]. Мышь удерживали за голову и таз, головой вверх, на расстоянии 30 см над мягкой поверхностью, после чего отпускали. Попытка считалась успешной, если мышь приземлялась на все четыре лапы. Фиксировали количество успешных попыток и число мышат, успешно выполнивших 3 попытки.

Тест «горизонтальная веревочка» проводили с Р10 по Р13 [20]. Мышь подвешивали за передние лапы на горизонтально натянутой веревочке диаметром 1 мм, расположенной на расстоянии 30 см над мягкой поверхностью, и в течение 30 с фиксировали время удержания на ней.

Тест «вздрагивание на хлопок» проводили с P10 по P14 [20]. На расстоянии 15 см от мыши осуществляли одиночный хлопок в ладоши и фиксировали наличие или отсутствие вздрагивания. Ушной рефлекс тестировали с P10 по P14 [20] проводя по внутренней по-

верхности уха нитью и фиксируя ответную реакции — отдергивание уха.

Тест «предпочтение материнского запаха» позволяет оценить способность мышат распознавать запах гнезда, который является для них социально-значимым фактором. Тестирование проводили на Р14 [21]. Мышат помещали в тестовую клетку Т/3С, одна треть которой была заполнена на глубину 3 см опилками из «домашней» клетки, центральная – чистыми опилками, а другая — опилками из «чужой» клетки. Каждой мыши предъявляли три 1-минутных посадки с интервалом 10 с. При каждой посадке мышей помещали в центральную часть клетки с чистыми опилками, причем при первой посадке их помещали головой к боковой стенке клетки, при второй — головой к опилкам с запахом гнезда и при третьей — головой по направлению к опилкам из «чужой» клетки. Фиксировали продолжительность нахождения мышат в секциях клетки во время каждой попытки.

Статистическую обработку данных проводили с помощью программы «Statistica V. 10.0.». Нормальность распределения проверяли с помощью критерия Шапиро-Уилка с последующей оценкой равенства дисперсий по критерию Левена. Так как в экспериментальных группах либо отсутствовало нормальное распределение, либо межгрупповое равенство дисперсий не соблюдалось, дальнейшую обработку проводили с помощью метода непараметрической статистики Манна-Уитни. Для определения статистической значимости различий повторных измерений в группе использовали парный критерий Вилкоксона. Для обработки данных, выраженных в %, использовали точный критерий Фишера. Результаты в таблицах представлены как среднее ± ошибка среднего (Mean \pm SEM), или в виде данных, выраженных в %. Различия между группами считали статистически значимыми при p < 0.05.

Результаты и обсуждение

Масса тела самцов и самок мышат контрольной группы на P6 и P7 превышала соответствующие показатели групп животных, пренатально получавших ВПК (табл. 1). При изучении прироста массы тела с P7 по

Р14 относительно Р6 (фоновый показатель) как у самцов, так и у самок мышей группы «ВПК» отмечалось ее увеличение в сравнении с показателями контрольной группы. Афобазол нормализовал прирост массы тела у мышей с фетальным вальпроат-синдромом (ФВС), что выразилось как в значимом снижении скорости набора массы в сравнении с группой «ВПК», так и в отсутствии различий по данному показателю относительно контроля (рис. 1).

Влияние афобазола на прирост массы тела у мышей BALB/c c ФВС (Mean±SEM).

Анализ сроков прозревания у самцов мышей группы «ВПК» на Р13 и Р14 выявил их отставание по сравнению с показателями контрольной группы, что выразилось в уменьшении на 23,7% (p=0,09) и 13,5% (p<0,05) числа открытых глаз, а также в незначимом снижении на 30,0% и 26,7% числа животных, открывших оба глаза, соответственно (**табл. 2**). Афобазол не предотвратил задержку открывания глаз у самцов мышей с ФВС.

ВПК, введенный пренатально, не влиял на сроки прозревания у самок мышей. Отмечалось лишь незначимое снижение на 24,7 и 21,7% числа самок мышей с полностью открытыми глазами на P13 в группах «ВПК» и «ВПК+Афобазол», соответственно, по сравнению с контрольной группой самок (табл. 2).

Таким образом, ВПК, введённая пренатально в дозе 400 мг/кг, отрицательно влияла на физическое развитие мышей линии BALB/c, что согласуется с литературными данными [20;23].

В тесте «переворачивания на поверхности» самцы мышей, получавшие ВПК, на Р6 статистически значимо дольше выполняли переворот со спины с упором на все четыре конечности по сравнению с контрольными мышами $(9,64\pm2,55\ \text{или}\ 10,79\pm2,61\ \text{vs}\ 6,58\pm0,67\ \text{в}\ \text{контроле})$, однако в последующие дни отличий по данному параметру не наблюдали (данные не представлены). У самок с ФВС отличий относительно контрольной группы не зарегистрировано (данные не представлены).

В тесте «избегание обрыва» поведение мышей BALB/с контрольных и опытных групп, как самцов, так и самок, оказалось схожим (данные не представлены).

Таблица 1

Масса тела мышей BALB/c с ФВС на P6 - P7 (Mean±SEM)

Самцы	P6	P7	Самки	P6	P7
Контроль, <i>n</i> =12	3,9±0,1*	4,5±0,2*	Контроль, n=15	4,1±0,2#	4,6±0,3*
ВПК, n=15	3,5±0,1	4,0±0,1	BΠK, VPA, n=24	3,6±0,1	4,1±0,1
ВПК+Афобазол, n=14	3,4±0,1	4,0±0,2	ВПК+Афобазол, n=20	3,5±0,2	4,1±0,2

Примечание: * -p < 0.05 по сравнению с группой «ВПК», # -p < 0.09 по сравнению с группой «ВПК».

В тесте «отрицательный геотаксис» статистически значимые различия у самцов группы «ВПК» по сравнению с контрольной группой по времени поворота тела на наклонной плоскости головой в направлении подъема наблюдались только на P12 (табл. 3). Афобазол, в эти же сроки, увеличил в 1,9 раза (p <0,05) скорость выполнения рефлекса у самцов с ФВС относительно самцов группы «ВПК» (табл. 3)

У самок мышей с ФВС значимых различий во времени, необходимом для принятия правильного положение тела в тесте «отрицательный геотаксис», относительно контрольной группы не обнаружено. При этом, на фоне введения афобазола самкам мышей с ФВС, от-

мечалась тенденция к превышению скорости поворота тела на P7 и P12 в 1,3 и 1,4 раз, соответственно, относительно группы «ВПК» (табл. 3). Межполовые различия в данном тесте наблюдались только на P12 в группах «ВПК+Афобазол», где самцы в 1,5 раза быстрее, чем самки, справлялись с задачей теста (табл. 3).

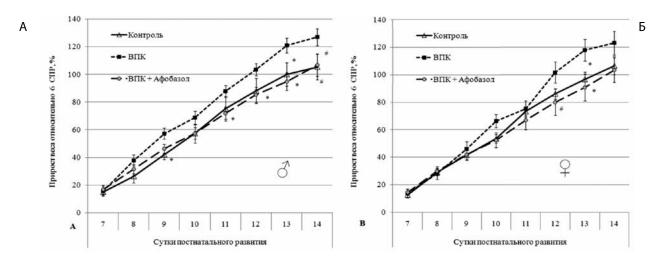

В тесте «переворачивание в воздухе» у самцов мышей группы «ВПК» значимое ухудшение координации движений по сравнению с контрольной группой отмечалось на Р14, что выразилось в уменьшении на 27,0% (p < 0,05) числа животных в группе, успешно выполнивших все 3 попытки (табл. 4). Показатели самцов мышей с ФВС, получавших Афобазол, в тесте «пере-

Таблица 2

Влияние афобазола на скорость прозревания у мышей BALB/c с ФВС (Mean±SEM)

Группы, число мышей	Число откры	лтых глаз, ед.	Число мышей с 2 открытыми глазами, %		
Самцы	P13	P14	P13	P14	
Контроль, n=12	1,7±0,2	2,0±0,0	83,3	100,0	
ВПК, n=15	1,3±0,2	1,7±0,1*	53,3	73,3	
ВПК+Афобазол, n=12	0,8±0,3*	1,7±0,2	25,0#	75,0	
Самки	P13	P14	P13	P14	
Контроль, n=15	1,5±0,2	1,8±0,1	66,7	86,7	
ВПК, n=24	1,0±0,2	1,8±0,1	42,0	88,0	
ВПК+Афобазол,n=20	1,2±0,2	2,0±0,1	45,0	95,0	

Примечание. * -p < 0.05 по сравнению с группой «Контроль», # -p < 0.05 по сравнению с группой «Контроль».

Рис. 1. A – самцы, B – самки; * – p <0,05 по сравнению с группой «ВПК», # – p <0,09 по сравнению с группой «ВПК». СПР – сутки постнатального развития.

ворачивание в воздухе» во все дни тестирования не отличались от контрольных значений (табл. 4).

У самок мышей с ФВС в тесте «переворачивание в воздухе» наблюдалось замедление формирования рефлекса, что выразилось на P13 — P14 в значимом снижении на 38,0 и 32,0%, соответственно, числа животных в группе успешно выполнивших все 3 попытки. При этом самки мышей с ФВС, получавшие афобазол, справлялись с задачей теста значительно лучше во все дни наблюдений, что выразилось в значимом увеличении на 46,0, 37,0 и 31,0% числа мышей, успешно выполнивших перевороты в воздухе, на P12 — P14, соответственно, по сравнению с группой «ВПК» (табл. 4).

Анализ числа животных, успешно выполнивших все 3 попытки в тесте «переворачивание в воздухе», выявил позитивный эффект афобазола, в большей степени для самок с ФВС, что может свидетельствовать о

протективном действии препарата на процессы развития нервной системы.

В тесте «горизонтальная веревочка» у самцов и самок мышей BALB/с, пренатально получавших ВПК, выраженной динамики в увеличении длительности удержания на веревочке передними конечностями не наблюдалось, в отличие от мышей контрольных групп, что выразилось в значимом уменьшении в 1,6 раза времени удержания на веревочке на P10 (табл. 4). Афобазол не улучшил показатели мышей с ФВС в данном тесте.

Анализ результатов теста «вздрагивание на хлопок» у самцов мышей группы «ВПК» свидетельствует о задержке развития, что демонстрирует отсутствие ответной реакции на внезапный раздражитель у всех животных на Р11 и в ее значимом снижении на Р12, относительно значений контрольной группы (табл. 5). Самки мышей с ФВС на Р11 вели себя аналогично самцам с

Влияние афобазола на поведение мышей BALB/c с ФВС в тесте «отрицательный геотаксис» (Mean±SEM)

Таблица 3

Группы, число мышей	Скорость поворота тела на наклонной плоскости, с							
Самцы	P7	P8	P9	P10	P11	P12		
Контроль, n=12	17,1±2,4	16,3±2,1	13,9±2,1	12,0±1,7	10,3±1,5	6,5±0,9*		
ВПК, n=12	21,9±1,8	20,8±2,3	16,5±2,4	13,0±1,7	9,3±1,1	10,3±1,5		
ВПК+Афобазол, n=14	20,3±2,9	19,0±2,6	13,1±2,5	11,7±2,8	8,9±1,6	5,3±1,0*		
Самки	P7	P8	P9	P10	P11	P12		
Контроль, <i>n</i> =12	17,4±2,3	16,8±2,8	14,0±2,2	12,6±1,6	8,7±0,9	8,0±1,1		
ВПК, n=24	21,5±1,8	17,7±1,7	16,6±1,9	12,2±1,4	12,2±1,5	11,3±1,6		
ВПК+Афобазол, n=20	16,9±1,9#	14,7±2,0	14,5±1,4	10,8±1,5	10,6±1,1	8,1±0,8#^		

Примечание. * -p < 0.05 по сравнению с группой «ВПК»; # -p < 0.09 по сравнению с группой «ВПК», $^{\wedge} - p < 0.05$ по сравнению с самцами группы «ВПК».

Таблица 4

Влияние афобазола на поведение мышей BALB/c с ФВС в тестах «переворачивание в воздухе» и «горизонтальная веревочка» (Mean±SEM)

Группы, число мышей	Чис	сло мышей, усп	Продолжительность удержания на веревочке, с			
Самцы	P10	P11	P12	P13	P14	P14
Контроль, <i>n</i> =12	0	0	45	73	91	20,8±3,1
ВПК, n=15	0	20	36	60	64*	12,9±1,5*
ВПК+Афобазол, n=14	0	33	40	67	83	12,8±2,3*
Самки	P10	P11	P12	P13	P14	P14
Контроль, <i>n</i> =15	7	14	29	71	86	18,3±2,6
ВПК, n=24	0	13	21	33*	54*	12,5±1,3*
ВПК+Афобазол, n=20	20	30	67#	70#	85#	12,7±2,1

Примечание. * -p < 0.05 по сравнению с группой «Контроль», # -p < 0.05 по сравнению с группой «ВПК».

ФВС, однако введение афобазола предотвращало снижение скорости формирования рефлекса (табл. 5).

Подобное изменение процессов развития нервной системы наблюдалось и при оценке формирования ушного рефлекса на фоне пренатального введения ВПК самцам и самкам мышей линии ВАLВ/с, что выразилось в значимом снижении числа ответных реакций животных на раздражитель в сравнении с показателями контрольных групп (табл. 5). Афобазол облегчал формирование рефлекса, как у самцов, так и у самок мышей с ФВС. Число реакций на стимул у самцов группы «ВПК+Афобазол» было значимо больше на Р10 — Р12, а у самок с ФВС, получавших афобазол — на Р10 в сравнении с показателем соответствующей группы «ВПК» (табл. 5).

Дефицит социального взаимодействия является одним из основных симптомов РАС, а наиболее распространенным тестом для его изучения в эксперименте является поведение в трех-камерной установке с предъявлением разных по социальной значимости объектов [23]. Поскольку данный тест применим для более взрослых животных, для определения ранних поведенческих нарушений при социальном распознавании мы использовали его модифицированную версию — тест «предпочтение материнского запаха».

Как следует из полученных результатов, самцы мышей контрольной группы при первоначальной посадке в опытную клетку пребывали примерно равное время в каждой из зон («домашней», «нейтральной» и «чужой»), тогда как мыши с Φ BC больше времени проводили в зоне с опилками из домашней клетки (p<0,05). При посадке мышей головой в направлении зоны с «домашним» запахом животные всех групп демонстрировали предпочтение этой части клетки. Однако, при помещении мышей головой в направлении зоны с запахом «чужой» клет-

ки, отмечалось отсутствие предпочтения определенного запаха у животных контрольной группы и группы с Φ BC, в то время как под действием афобазола, самцы мышей с Φ BC превалирующую часть времени проводили в зоне с опилками из домашней клетки (p<0,05) (табл. 6).

Самки мышей контрольной группы, также как самки группы «ВПК» при первом помещении в опытную клетку вдоль зоны с нейтральными опилками вели себя аналогично самцам, не отдавая предпочтения какой-либо из них. Тогда как самки мышей с ФВС, получавшие афобазол, предпочитали зону с «домашним» запахом (табл. 6). При втором помещении мышей всех групп в экспериментальную клетку головой в направлении зоны с «домашним» запахом мыши всех групп преимущественно выбирали её. Наиболее интересным является анализ третьего размещения животных в клетке с разными по социальной значимости зонами, когда мыши контрольной группы, также как и мыши группы «ВПК + Афобазол», соответственно, в 2,0 (p<0,05) и 3,0 раз (p<0,05) больше времени проводили в зоне с опилками из «домашней» клетки (табл. 6).

Результаты проведенного исследования продемонстрировали наличие у мышей с ФВС, вызванным пренатальным введением ВПК в дозе 400 мг/кг, задержки развития и социального распознавания в гнездовом периоде с Р6 по Р14, проявляющейся в более позднем открывании глаз, замедлении развития ответных реакций на сенсорные стимулы, увеличении времени переворота на поверхности и ухудшение моторики и координации движений в тестах «отрицательный геотаксис» и «переворот в воздухе», и отсутствии предпочтения материнского запаха. Недавние исследования предполагают, что сниженный при рождении вес может быть фактором риска РАС [8]. В наших опытах мыши с ФВС значимо отставали по массе тела на Р6—

Таблица 5

Влияние афобазола на скорость формирование рефлексов у мышей BALB/с с ФВС (Mear	n±SEM)
bilinine apocasona na enopocio popinipobaline pequencos y insizzen bilizare e pe (incar	,

Группы, число мышей	Вздра	гивание на хлопок	х, балл	Реакция на прикосновение к уху, балл		
Самцы	P11	P12	P13	P10	P11	P12
Контроль, n=12	0,2±0,1	0,8±0,1	0,9±0,1	0,6±0,2	0,75±0,13	0,9±0,1
ВПК, n=15	0,0±0,0	0,5±0,1*	0,8±0,1	0,0±0,0*	0,27±0,12*	0,7±0,1
ВПК+Афобазол, n=14	0,0±0,0	0,6±0,2	0,9±0,1	0,5±0,2#	0,67±0,14#	1,0±0,0#
Самки	P11	P12	P13	P11	P11	P12
Контроль, n=15	0,2±0,1	0,6±0,1	0,9±0,1	0,3±0,1	0,5±0,1	0,9±0,1
ВПК, n=24	0,0±0,0*	0,5±0,1	0,8±0,1	0,1±0,1*	0,4±0,1	0,8±0,1
ВПК+Афобазол, n=20	0,2±0,1	0,5±0,1	0,9±0,1	0,5±0,1#	0,6±0,1	0,9±0,1

Примечание. * -p < 0.05 по сравнению с группой «Контроль»; # -p < 0.05 по сравнению с группой «ВПК».

Таблица 6

DOI: 10.25557/0031-2991.2021.01.12-21

Р7 в сравнении с контрольными животными. Однако, в дальнейшем, прирост веса у получивших ВПК мышей превышал показатели контрольных групп, чего не наблюдалось на фоне введения афобазола. Можно отметить, что дети с РАС и деструктивным поведением подвержены повышенному риску ожирения [24].

Мышата групп, пренатально получавших ВПК, а затем с Р7 по Р14 — афобазол, проводили больше времени в зоне с опилками, взятыми из домашней клетки, в то время как у мышей групп «ВПК», отличий во времени, проведенном в разных по социальной значимости зонах (с чистыми опилками, опилками из домашней или чужой клетки), не было. Эти данные свидетельствуют о том, что у мышей линии BALB/c с ФВС нарушается способность различать социальные и несоциальные, а также знакомые и чужие запахи, что воспроизводит характерную для РАС дисфункцию социального взаимодействия и распознавания [8]. Полученные результаты указывают на способность афобазола ослаблять повреждающее воздействие и даже нормализовать обонятельную функцию. Следует отметить, что гломерулы в обонятельных луковицах мышей развиваются от Е13 до Е16 [25], т.е. в период введения нами токсической дозы ВПК.

Поведение самцов мышей BALB/с в тесте предпочтения материнского запаха возможно связано со специфичным для линии аутизм-релевантным фенотипом с нарушениями в обонятельной сфере, особенно проявляющимися при предъявлении социальных запахов [26]. Известно, что обонятельная функция у грызунов обеспечивается основной обонятельной системой и

вспомогательной, специализированной для внутривидовой связи. Показано что типичные гломерулы линий мышей BALB/с и CD-1 отличаются по своей внутригломерулярной связности и морфометрии [27], чем можно объяснить различное поведение мышей в ответ на запахи. Половой диморфизм в обонятельной функции был обнаружен в добавочной обонятельной системе, которая в основном связана с информацией о феромонах и репродуктивным поведением [28]. Согласно полученным результатам самки мышей линии BALB/с обладают лучшими обонятельными способностями, связанными с осуществлением видовых коммуникаций, что косвенно подтверждается большим числом нетипичных гломерул у самок [28], и позволяет предполагать половой диморфизм по данному признаку.

Выявленные в нашем исследовании позитивные эффекты афобазола — соединения, обладающего свойствами агониста сигма1-рецепторов, лиганда МТ1- и МТ3-рецепторов, а также регуляторного участка МАО-А [29-31], не противоречат представлениям о стимуляции препаратом шаперонной функции сигма1-рецепторов [32], что вероятно обеспечивает влияние на моноаминергические и глутаматергические системы мозга, на пластические и трофические процессы в ЦНС, изменения которых характерны при РАС [33].

Заключение

Таким образом, в результате проведенных экспериментов по изучению влияния афобазола на показатели развития нервной системы в периоде раннего постнатального развития мышей линии BALB/с на модели

Влияние афобазола на поведение мышей BALB/c с ФВС в тесте «предпочтение материнского запаха» (Mean±SEM)

Длительность нахождения в зоне клетки Группы, число мышей Посадка в экспериментальную клетку, ориентация мыши. головой к боковой стене головой к «домашним» опилкам головой к «чужим» опилкам Самцы Д Ч Контроль, n=1116,0±6,9# $20,2\pm6,1$ $23,8\pm7,6$ $33,4\pm8,1$ $20,1\pm6,5$ $6,6\pm4,5^{\circ}$ $17,2\pm7,0$ $22,5\pm6,3$ $20,4\pm7,5$ 32.8 ± 6.0 $24,9\pm6,9$ $10,3\pm1,3$ B Π K, n=12 $11,3\pm1,3$ $14,7\pm6,3^{\circ}$ $46,5\pm4,1$ $9,1\pm1,9$ $3,3\pm2,6^{\circ}$ $23,6\pm6,6$ $36,2\pm5,3$ $22,4\pm4,9$ 1,8±1,5#^ $49,2\pm2,2$ $10,8\pm2,2$ $0.0\pm0.0^{\circ}$ 39,2±4,9[^] $16,8\pm4,3$ 4,1±2,4*^ ВПК+Афобазол, n=14Η Ч Д Η Ч Ч Д Д Η Самки Контроль, n=12 $24,0\pm6,3$ $16,4\pm2,7$ $19,5\pm6,3$ $41,6\pm3,4$ $10,2\pm1,2$ $8,2\pm3,3^{^{^{^{^{^{}}}}}}$ 31,9±6,0* 12,3±1,6* 15,9±5,6[^] B Π K, n=24 $17,3\pm 5,0$ $19,5\pm3,6$ $23,2\pm 5,0$ $35,8\pm4,9$ $17,9\pm3,5$ $6,2\pm2,6^{\circ}$ $13,1\pm3,8$ $31,0\pm4,4$ $15,9\pm4,6$ ВПК+Афобазол, n=2032,4±4,3* $26,4\pm4,2$ 1,3±1,3*^ $44,0\pm 3,9$ $12,7\pm2,9$ $3,4\pm2,4^{\circ}$ 31,7±4,7* 18,1±3,4* 10,3±3,97

Примечание. * -p < 0.05 по сравнению с группой «ВПК»; # -p < 0.09 по сравнению с группой «ВПК»; ^ -p < 0.05 по сравнению с отсеком, содержащим опилки из «домашней» клетки (внутригрупповое сравнение); Д — опилки из «домашней» клетки, Н — «нейтральные» (чистые опилки), Ч — опилки из «чужой» клетки.

ФВС установлены корригирующие свойства препарата в отношении нарушений, вызванных пренатальным введением ВПК, что определяет целесообразность дальнейшего изучения афобазола на моделях РАС.

Литература (п.п. 1-4; 6-13; 19-28 см. References)

- Паунова С.С., Донин И.М., Бусова Е.С., Семина И.В., Лифшиц М.И., Попов В.Е. и др. Вальпроат-синдром у новорожденного. *Педиатрия*. 2016; 95(1): 140-2.
- Капица И.Г., Иванова Е.А., Воронина Т.А., Середенин С.Б. Особенности поведенческого фенотипа мышей линии BALB/C. Российский физиологический журнал им. И.М. Сеченова. 2020; 106 (3): 373–83.
- Незнамов Г.Г., Сюняков С.А., Чумаков Д.В., Маметова Л.Э. Новый селективный анксиолитик афобазол. Журнал неврологии и психиатрии им. С.С. Корсакова. 2005; 105(4): 35-40.
- Дурнев А.Д., Жанатаев А.К., Шредер О.В., Середенин С.Б. Антимутагенные и антитератогенные свойства афобазола. Экспериментальная и клиническая фармакология. 2009. 72(1): 46–51.
- 17. Капица И.Г., Иванова Е.А., Воронина Т.А., Калинина А.П., Середенин С.Б. Коррекция афобазолом тревоги при моделировании аутизма. Экспериментальная и клиническая фармакология. 2019; 82(10): 3—7.
- Капица И.Г., Калинина А.П., Алымов А.А., Воронина Т.А., Середенин С.Б. Афобазол ослабляет когнитивную ригидность в экспериментальной модели расстройств аутистического спектра. Бюллетень экспериментальной биологии и медицины. 2019; 168(8): 191–4.
- Середенин С.Б., Воронин М.В. Нейрорецепторные механизмы действия афобазола. Экспериментальная и клиническая фармакология. 2009; 72(1): 3-11.
- Середенин С.Б., Воронин М.В., Абрамова Е.В. Сигма-1 рецепторы новая мишень фармакологической регуляции. Экспериментальная и клиническая фармакология. 2017; 80(9): 9-19.
- Абрамова Е.В., Воронин М.В., Середенин С.Б. Взаимодействие афобазола с Сигма-1 рецепторами головного мозга мышей. Химико-фармацевтический журнал. 2015; 49(1): 9-11.

References

- Zwaigenbaum L., Bryson S., Rogers T., Roberts W., Brian J., Szatmari P. Behavioral manifestations of autism in the first year of life. *International journal of developmental neuroscience*. 2005; 23(2–3): 143–52.
- Pyhala R, Hovi P, Lahti M, Sammallahti S, Lahti J, Heinonen K et al. Very low birth weight, infant growth, and autism-spectrum traits in adulthood. *Pediatrics*. 2014; 134(6): 1075–83.
- Chen C., Van Horn J.D. Developmental neurogenetics and multimodal neuroimaging of sex differences in autism. *Brain imaging and behavior*. 2017; 11: 38-61.
- Rasalam A.D., Hailey H., Williams J.H.G., Moore S.J., Turnpenny P.D., Lloyd D.J., et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. *Developmental medicine and child neurology*. 2005; 47(8): 551-5.
- Paunova S.S., Donin I.M., Busova E.S., Semina I.V., Lifshits M.I., Popov V.E., et al. Valproate syndrome in a newborn. *Pediatriya*. 2016; 95(1): 140-2. (In Russian)

- Kataoka S., Takuma K., Hara Y., Maeda Y., Ago Y., Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. *The international journal of neuropsychopharmacology*. 2013; 16(1): 91–103.
- Roullet F.I., Wollaston L., Decatanzaro D., Foster J.A. Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. *Neuroscience*. 2010; 170(2): 514–22.
- 8. Yang E-J., Ahn S., Lee K., Mahmood U., Kim H.S. Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. *PLoS One*. 2016. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153298 (Accessed 08 June 2020)
- Tartaglione A.M., Schiavi S., Calamandrei G., Trezz V. Prenatal valproate in rodents as a tool to understand the neural underpinnings of social dysfunctions in autism spectrum disorder. *Neuropharmacology*. 2019. Available at: https://www.sciencedirect.com/science/article/abs/pii/S0028390818309134?via%3Dihub (Accessed 08 June 2020)
- Nicolini C., Fahnestock M. The valproic acid-induced rodent model of autism. Experimental Neurology. 2018; 299: 217–227.
- Kazdoba T.M., Leach P.T., Yang M., Silverman J.L., Solomon M., Crawley J.N. Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. *Curr Top Behav Neurosci*. 2016; 28: 1-52.
- 12. Brodkin E.S. BALB/c mice: low sociability and other phenotypes that may be relevant to autism. *Behav. Brain Res.* 2007; 176: 53-65.
- Moy S.S., Nadler J.J., Young N.B., Perez A., Holloway L.P., Barbaro R.P., et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. *Behav Brain Res.* 2007; 176(1): 4-20.
- Kapitsa I.G., Ivanova E.A., Voronina T.A., Seredenin S.B. Autism-Relevant Behavioral Traits in Inbred Strain of Balb/C Mice. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2020; 106(3); 373–83. (In Russian).
- Neznamov G.G., Syunyakov S.A., Chumakov D.V., Mametova L.E. Afobazole – new selective anxyolytic drug. *Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova*. 2005; 105(4): 35-40. (In Russian)
- Durnev A.D., Zhanataev A.K., Shreder O.V., Seredenin S.B. Antimutagenic and antiteratogenic properties of afobazole. *Eksperimental'naya i klinicheskaya farmakologiya*. 2009; 72(1): 46–51. (In Russian)
- Kapitsa I.G., Ivanova E.A., Voronina T.A., Kalinina A.P., Seredenin S.B. Treatment of Anxiety with Afobazole in Experimental Model of Autism. *Eksperimental'naya i klinicheskaya farmakologiya*. 2019; 82(10): 3–7. (In Russian)
- Kapitsa I.G., Kalinina A.P., Alymov A.A., Voronina T.A., Seredenin S.B. Afobazole facilitates cognitive rigidity in BALB/c mice with autism-relevant behavioral phenotype. *Byulleten eksperimentalnoy biologii i meditsiny*. 2019; 168(8): 191–4. (In Russian)
- Wagner G.C., Reuhl K.R., Cheh M., McRae P., Halladay A.K. A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. *Journal of autism and developmental dis*orders. 2006; 36(6): 779-93.
- Hill J.M., Lim M.A., Stone M.M. Developmental Milestones in the Newborn Mouse. In: Gozes I, eds. Neuropeptide Techniques. Neuromethods Na. 39. Totowa, New Jersey: Humana Press Inc. 2008: 131-9.
- Kane M.J., Angoa-Perez M., Briggs D.I., Sykes C.E., Francescutti D.M., Rosenberg D.R., et al. Mice genetically depleted of brain serotonin display social impairments, communication deficits and repetitive behaviors: possible relevance to autism. *PLoS One*. 2012.

- Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0048975 (Accessed 08 June 2020)
- Rodríguez-Fanjul J., Fernández-Feijóo C.D., Lopez-Abad M., Ramos M.G.L., Caballé R.B., Alcántara-Horillo S., et al. Neuroprotection With Hypothermia and Allopurinol in an Animal Model of Hypoxic-Ischemic Injury: Is It a Gender Question? *PLoS One*. 2017. Available at: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184643 (Accessed 08 June 2020)
- Moy S.S., Nadler J.J., Perez A., Barbaro R.P., Johns J.M., Magnuson T.R. et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. *Genes, brain, and behavior.* 2004; 3(5): 287–302.
- Healy S., Aigner C.J., Haegele J.A. Prevalence of overweight and obesity among US youth with autism spectrum disorder. *Autism.* 2019; 23(4): 1046-50.
- Blanchart A., Romaguera M., García-Verdugo J.M., de Carlos J.A., López-Mascaraque L. Synaptogenesis in the mouse olfactory bulb during glomerulus development. *The European journal of neurosci*ence. 2008; 27(11): 2838-46.
- Burket J.A., Young C.M., Green T.L., Benson A.D., Deutsch S.I. Characterization of gait and olfactory behaviors in the BALB/c mouse model of autism spectrum disorders. *Brain research bulletin*. 2016; 122: 29-34.

- Weruaga E., Briñón J.G., Porteros A., Arévalo R., Aijón J., Alonso J.R. A sexually dimorphic group of atypical glomeruli in the mouse olfactory bulb. *Chemical senses*. 2001; 26(1): 7–15.
- Segovia S., Guillamón A. Sexual dimorphism in the vomeronasal pathway and sex differences in reproductive behaviors. *Brain research* reviews. 1993; 18(1): 51–74.
- Seredenin S.B., Voronin M.V. Neuroreceptor mechanisms involved in the action of afobazole. *Eksperimental'naya i klinicheskaya farma-kologiya*. 2009; 72(1): 3-11. (In Russian)
- Seredenin S.B., Voronin M.V., Abramova E.V. Sigma-1 receptors: a new pharmacological target. *Eksperimental'naya i klinicheskaya far-makologiya*. 2017; 80(9): 9-19. (In Russian)
- 31. Abramova E.V., Voronin M.V., Seredenin S.B. Interaction of afobazole with Sigma-1 receptors in mice brain. *Khimiko-farmatsevticheskiy zhurnal*. 2015; 49(1): 9-11. (In Russian).
- 32. Hayashi T. The Sigma-1 receptor in cellular stress signaling. *Frontiers in neuroscience*. 2019. Available at: https://www.frontiersin.org/articles/10.3389/fnins.2019.00733/full (Accessed 08 June 2020).
- Varghese M., Keshav N., Jacot-Descombes S., Warda T., Wicinski B., Dickstein D. L., et al. Autism spectrum disorder: neuropathology and animal models. *Acta Neuropathol*. 2017; 134(4): 537-66.

Сведения об авторах:

Середенин Сергей Борисович, доктор мед. наук, проф., акад. РАН, науч. руководитель ФГБНУ «НИИ фармакологии им. В.В. Закусова»;

Воронина Татьяна Александровна, доктор мед. наук, зав. лаб. психофармакологии ФГБНУ «НИИ фармакологии им. В.В. Закусова»:

Капица Инга Геннадиевна, канд. биол. наук, ст. науч. сотр. лаб. психофармакологии ФГБНУ «НИИ фармакологии им. В.В. Закусова», e-mail: ingakap73@mail.ru;

Алымов Александр Александрович, аспирант, мл. науч. сотр. лаб. психофармакологии ФГБНУ «НИИ фармакологии им. В.В. Закусова».